Multicentre biomarker cohort study on the efficacy of nivolumab treatment for gastric cancer

Takaomi Hagi, Yukinori Kurokawa, Ryohei Kawabata, Takeshi Omori, Jin Matsuyama, Kazumasa Fujitani, Motohiro Hirao, Yusuke Akamaru, Tsuyoshi Takahashi, Makoto Yamasaki, Taroh Satoh, Hidetoshi Eguchi, Yuichiro Doki, Takaomi Hagi, Yukinori Kurokawa, Ryohei Kawabata, Takeshi Omori, Jin Matsuyama, Kazumasa Fujitani, Motohiro Hirao, Yusuke Akamaru, Tsuyoshi Takahashi, Makoto Yamasaki, Taroh Satoh, Hidetoshi Eguchi, Yuichiro Doki

Abstract

Background: Predictive factors of nivolumab treatment response in patients with gastric cancer (GC) remain unclear.

Methods: In this retrospective cohort study, tissue specimens of patients with unresectable or recurrent GC and prior or scheduled treatment with nivolumab as third-line or higher therapy between September 2017 and February 2019 were collected from 23 institutions. The tumour-positive score (TPS) and combined positive score (CPS) of PD-L1 expression and mismatch repair (MMR) were analysed by immunohistochemistry. Associations between clinicopathological factors and tumour-response rate, hyperprogressive disease (HPD) rate and survival were assessed.

Results: Of 200 eligible patients, 143 had measurable lesions. The response and HPD rates were 17.5% and 22.1%, respectively. The response rate was significantly higher in patients with performance status (PS) 0-1 (P = 0.026), non-peritoneal metastasis (P = 0.021), PD-L1 TPS ≥ 1 (P = 0.012), CPS ≥ 5 (P = 0.007) or ≥ 10 (P < 0.001) or MMR deficiency (P < 0.001). The HPD rate was significantly higher in patients with PS 2-3 (P = 0.026), liver metastasis (P < 0.001) and CPS < 10 (P = 0.048). Multivariate analysis revealed that CPS (P = 0.001) and MMR (P = 0.002) were independent prognostic factors of progression-free survival, as well as liver metastasis (P < 0.001), peritoneal metastasis (P = 0.004) and CRP (P < 0.001).

Conclusions: PD-L1 CPS and MMR could be useful biomarkers for nivolumab treatment efficacy in GC.

Clinical trial registration: UMIN000032164.

Conflict of interest statement

Y.K. received lecture fees and grant from Ono Pharmaceutical. M.Y. received grant from Ono Pharmaceutical. T.S. received lecture fees from Ono Pharmaceutical and Bristol-Myers Squibb and department support grant from Ono Pharmaceutical. Y.D. received lecture fees and grant from Ono Pharmaceutical.

Figures

Fig. 1. Flow chart of patient eligibility…
Fig. 1. Flow chart of patient eligibility for inclusion in the study.
RR response rate, HPD hyperprogressive disease, CT computed tomography.
Fig. 2. Kaplan–Meier progression-free and overall survivals…
Fig. 2. Kaplan–Meier progression-free and overall survivals for 136 patients who had measurable lesions according to response status.
a Progression-free survival, b overall survival in complete response (CR) or partial response (PR) (n = 25), stable disease (SD) (n = 18), progressive disease (PD) without hyperprogressive disease (HPD) (n = 63) and HPD (n = 30).
Fig. 3. Kaplan–Meier progression-free survival for all…
Fig. 3. Kaplan–Meier progression-free survival for all 200 patients according to PD-L1 and MMR status.
a Tumour-positive score (TPS) <1 (n = 150) or TPS ≥1 (n = 50), b combined positive score (CPS) <1 (n = 83) or ≥1 (n = 117), c CPS <5 (n = 126) or ≥5 (n = 74), d CPS <10 (n = 161) or ≥10 (n = 39) and (e) mismatch repair (MMR) deficient (n = 29) or proficient (n = 171).

References

    1. International Agency for Research on Cancer. GLOBOCAN 2018. World Health Organization. (2018).
    1. Koizumi W, Narahara H, Hara T, Takagane A, Akiya T, Takagi M, et al. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol. 2008;9:215–221. doi: 10.1016/S1470-2045(08)70035-4.
    1. Cunningham D, Starling N, Rao S, Iveson T, Nicolson M, Coxon F, et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N. Engl. J. Med. 2008;358:36–46. doi: 10.1056/NEJMoa073149.
    1. Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383:31–39. doi: 10.1016/S0140-6736(13)61719-5.
    1. Wilke H, Muro K, Van, Cutsem E, Oh SC, Bodoky G, Shimada Y, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15:1224–1235. doi: 10.1016/S1470-2045(14)70420-6.
    1. Kurokawa Y, Sugimoto N, Miwa H, Tsuda M, Nishina S, Okuda H, et al. Phase II study of trastuzumab in combination with S-1 plus cisplatin in HER2-positive gastric cancer (HERBIS-1) Br. J. Cancer. 2014;110:1163–1168. doi: 10.1038/bjc.2014.18.
    1. Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17:717–726. doi: 10.1016/S1470-2045(16)00175-3.
    1. Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:2461–2471. doi: 10.1016/S0140-6736(17)31827-5.
    1. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction Cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 2018;4:e180013. doi: 10.1001/jamaoncol.2018.0013.
    1. Shitara K, Özguroglu M, Bang YJ, Bartolomeo MD, Manadalà M, Ryu MH, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet. 2018;392:123–133. doi: 10.1016/S0140-6736(18)31257-1.
    1. Sasaki A, Nakamura Y, Mishima S, Kawagoe A, Kuboki Y, Bando H, et al. Predictive factors for hyperprogressive disease during nivolumab as anti-PD1 treatment in patients with advanced gastric cancer. Gastric Cancer. 2019;22:793–802. doi: 10.1007/s10120-018-00922-8.
    1. Kato S, Goodman A, Walavalkar V, Barkauskas DA, Sharabi A, Kurzrock R, et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin. Cancer Res. 2017;23:4242–4250. doi: 10.1158/1078-0432.CCR-16-3133.
    1. Saâda-Bouzid E, Defaucheux C, Karabajakian A, Coloma VP, Servois V, Paoletti X, et al. Hyperprogression during anti- PD-1/PD- L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann. Oncol. 2017;28:1605–1611. doi: 10.1093/annonc/mdx178.
    1. Kulangara K, Zhang N, Corigliano E, Guerrero L, Waldroup S, Jaiswal D, et al. Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch. Pathol. Lab. Med. 2019;143:330–337. doi: 10.5858/arpa.2018-0043-OA.
    1. Le DT, Uram JN, Wang H, Bartolomeo MD, Mandalà M, Ryu MH, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015;372:2509–2520. doi: 10.1056/NEJMoa1500596.
    1. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–413. doi: 10.1126/science.aan6733.
    1. Mishima, S., Kawagoe, A., Nakamura, Y., Sasaki, A., Kotani, D., Kuboki, Y. et al. Clinicopathological and molecular features of responders to nivolumab for patients with advanced gastric cancer. J. Immunother. Cancer10.1186/s40425-019-0514-3 (2019).
    1. Hashimoto T, Kurokawa Y, Takahashi T, Miyazaki Y, Tanaka K, Makino T, et al. Predictive value of MLH1 and PD-L1 expression for prognosis and response to preoperative chemotherapy in gastric cancer. Gastric Cancer. 2019;22:785–792. doi: 10.1007/s10120-018-00918-4.
    1. Chen, L. T., Satoh, T., Ryu, M. H., Chao, Y., Kato, K., Chung, H. C. et al. A phase 3 study of nivolumab in previously treated advanced gastric or gastroesophageal junction cancer (ATTRACTION-2): 2-year update data. Gastric Cancer10.1007/s10120-019-01034-7 (2019).
    1. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 2018;24:1449–1458. doi: 10.1038/s41591-018-0101-z.
    1. Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003;349:247–257. doi: 10.1056/NEJMoa022289.
    1. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J. Clin. Oncol. 2010;28:3219–3226. doi: 10.1200/JCO.2009.27.1825.
    1. Choi YY, Kim H, Shin SJ, Kim HY, Lee J, Yang HK, et al. Microsatellite instability and programmed cell death-ligand 1 expression in stage II/III gastric cancer: post hoc analysis of the CLASSIC randomized controlled study. Ann. Surg. 2019;270:309–316. doi: 10.1097/SLA.0000000000002803.
    1. Büttner R, Gosney JR, Skov BG, Adam J, Motoi N, Bloom KJ, et al. Programmed death-ligand 1 immunohistochemistry testing: a review of analytical assays and clinical implementation in non-small-cell lung cancer. J. Clin. Oncol. 2017;35:3867–3876. doi: 10.1200/JCO.2017.74.7642.
    1. Rimm DL, Han G, Taube JM, Yi ES, Bridge JA, Flieder DB, et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol. 2017;3:1051–1058. doi: 10.1001/jamaoncol.2017.0013.
    1. Tsao MS, Kerr KM, Kockx M, Beasley MB, Borczuk AC, Botling J, et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J. Thorac. Oncol. 2018;13:1302–1311. doi: 10.1016/j.jtho.2018.05.013.
    1. Williams GH, Nicholson AG, Snead DRJ, Thunnissen E, Lantuejoul S, Cane P, et al. Interobserver reliability of programmed cell death ligand-1 scoring using the VENTANA PD-L1 (SP263) assay in NSCLC. J. Thorac. Oncol. 2020;15:550–555. doi: 10.1016/j.jtho.2019.11.010.
    1. Tabernero, J., Cutsem, E. V., Bang, Y. J., Fuchs, C. S., Wyrwicz, L., Lee, K. W. et al. Pembrolizumab with or without chemotherapy versus chemotherapy for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: the phase III KEYNOTE-062 study. J. Clin. Oncol.37 (suppl; abstr LBA4007), LBA4007–LBA4007 (2019).
    1. Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, Postel-Vinay S, et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti- PD-1/PD- L1. Clin. Cancer Res. 2017;23:1920–1928. doi: 10.1158/1078-0432.CCR-16-1741.
    1. Ferrara R, Mezquita L, Texier M, Lahmar J, Audigier-Valette C, Tessonnier L, et al. Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. 2018;4:1543–1552. doi: 10.1001/jamaoncol.2018.3676.
    1. Lamichhane P, Karyampudi L, Shreeder B, Krempski J, Bahr D, Daum J, et al. IL-10 release upon PD-1 blockade sustains immunosuppression in ovarian cancer. Cancer Res. 2017;77:6667–6678. doi: 10.1158/0008-5472.CAN-17-0740.
    1. Champiat S, Ferrara R, Massard C, Besse B, Marabelle A, Soria JC, et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat. Rev. Clin. Oncol. 2018;15:748–762. doi: 10.1038/s41571-018-0111-2.
    1. Massard C, Gordon MS, Sharma S, Rafii S, Wainberg ZA, Luke J, et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J. Clin. Oncol. 2016;34:3119–3125. doi: 10.1200/JCO.2016.67.9761.
    1. Tumeh PC, Hellmann MD, Hamid O, Tsai KK, Loo KL, Gubens MA, et al. Liver metastasis and treatment outcome with Anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunol. Res. 2017;5:417–424. doi: 10.1158/2326-6066.CIR-16-0325.
    1. Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, Nakamura Y, et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl Acad. Sci. USA. 2019;116:9999–10008. doi: 10.1073/pnas.1822001116.
    1. Polom K, Marano L, Marrelli D, De, Luca R, Roviello G, Savelli V, et al. Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br. J. Surg. 2018;105:159–167. doi: 10.1002/bjs.10663.
    1. Smyth EC, Wotherspoon A, Peckitt C, Gonzalez D, Hulkki-Wilson S, Eltahir Z, et al. Mismatch repair deficiency, microsatellite instability, and survival an exploratory analysis of the medical research council adjuvant gastric infusional chemotherapy (MAGIC) trial. JAMA Oncol. 2017;3:1197–1203. doi: 10.1001/jamaoncol.2016.6762.
    1. Rasmussen JH, Lelkaitis G, Håkansson K, Vogelius IR, Johannesen HH, Fischer BM, et al. Intratumor heterogeneity of PD-L1 expression in head and neck squamous cell carcinoma. Br. J. Cancer. 2019;120:1003–1006. doi: 10.1038/s41416-019-0449-y.

Source: PubMed

3
Suscribir