Mitii™ ABI: study protocol of a randomised controlled trial of a web-based multi-modal training program for children and adolescents with an Acquired Brain Injury (ABI)

Roslyn N Boyd, Emmah Baque, Adina Piovesana, Stephanie Ross, Jenny Ziviani, Leanne Sakzewski, Lee Barber, Owen Lloyd, Lynne McKinlay, Koa Whittingham, Anthony C Smith, Stephen Rose, Simona Fiori, Ross Cunnington, Robert Ware, Melinda Lewis, Tracy A Comans, Paul A Scuffham, Roslyn N Boyd, Emmah Baque, Adina Piovesana, Stephanie Ross, Jenny Ziviani, Leanne Sakzewski, Lee Barber, Owen Lloyd, Lynne McKinlay, Koa Whittingham, Anthony C Smith, Stephen Rose, Simona Fiori, Ross Cunnington, Robert Ware, Melinda Lewis, Tracy A Comans, Paul A Scuffham

Abstract

Background: Acquired brain injury (ABI) refers to multiple disabilities arising from damage to the brain acquired after birth. Children with an ABI may experience physical, cognitive, social and emotional-behavioural impairments which can impact their ability to participate in activities of daily living (ADL). Recent developments in technology have led to the emergence of internet-delivered therapy programs. "Move it to improve it" (Mitii™) is a web-based multi-modal therapy that comprises upper limb (UL) and cognitive training within the context of meaningful physical activity. The proposed study aims to compare the efficacy of Mitii™ to usual care to improve ADL motor and processing skills, gross motor capacity, UL and executive functioning in a randomised waitlist controlled trial.

Methods/design: Sixty independently ambulant children (30 in each group) at least 12 months post ABI will be recruited to participate in this trial. Children will be matched in pairs at baseline and randomly allocated to receive either 20 weeks of Mitii™ training (30 min per day, six days a week, with a potential total dose of 60 h) immediately, or be waitlisted for 20 weeks. Outcomes will be assessed at baseline, immediately post-intervention and at 20 weeks post-intervention. The primary outcomes will be the Assessment of Motor and Process Skills and 30 s repetition maximum of functional strength exercises (sit-to-stand, step-ups and half kneel to stand). Measures of body structure and functions, activity, participation and quality of life will assess the efficacy of Mitii™ across all domains of the International Classification of Functioning, Disability and Health framework. A subset of children will undertake three tesla (3T) magnetic resonance imaging scans to evaluate functional neurovascular changes, structural imaging, diffusion imaging and resting state functional connectivity before and after intervention.

Discussion: Mitii™ provides an alternative approach to deliver intensive therapy for children with an ABI in the convenience of the home environment. If Mitii™ is found to be effective, it may offer an accessible and inexpensive intervention option to increase therapy dose.

Trial registration: ANZCTR12613000403730.

Figures

Fig. 1
Fig. 1
CONSORT Flow chart of the move it to improve it (Mitii™) study

References

    1. Australian Institute of Health and Welfare . Disability in Australia: Acquired Brain Injury. 55 2007.
    1. Smithers-Sheedy H, Badawi N, Blair E, Cans C, Himmelmann K, Krageloh-Mann I, et al. What constitutes cerebral palsy in the twenty-first century? Dev Med Child Neurol. 2014;56(4):323–8. doi: 10.1111/dmcn.12262.
    1. Economics A. The economic cost of spinal cord injury and traumatic brain injury in Australia. 2009.
    1. Australian Bureau of Statistics. Disability, ageing and carers: summary of findings, Australia 2003. Canberra 2004.
    1. Anderson V, Brown S, Newitt H, Hoile H. Long-term outcome from childhood traumatic brain injury: intellectual ability, personality, and quality of life. Neuropsychology. 2011;25(2):176–84. doi: 10.1037/a0021217.
    1. Anderson V, Brown S, Newitt H, Hoile H. Educational, vocational, psychosocial, and quality-of-life outcomes for adult survivors of childhood traumatic brain injury. J Head Trauma Rehabil. 2009;24(5):303–12. doi: 10.1097/HTR.0b013e3181ada830.
    1. Anderson VA, Catroppa C, Dudgeon P, Morse SA, Haritou F, Rosenfeld JV. Understanding predictors of functional recovery and outcome 30 months following early childhood head injury. Neuropsychology. 2006;20(1):42–57. doi: 10.1037/0894-4105.20.1.42.
    1. Li L, Liu J. The effect of pediatric traumatic brain injury on behavioral outcomes: a systematic review. Dev Med Child Neurol. 2013;55(1):37–45. doi: 10.1111/j.1469-8749.2012.04414.x.
    1. McKinlay A, Grace RC, Horwood LJ, Fergusson DM, MacFarlane MR. Long-term behavioural outcomes of pre-school mild traumatic brain injury. Child Care Health Dev. 2010;36(1):22–30. doi: 10.1111/j.1365-2214.2009.00947.x.
    1. Rimmer JH, Riley B, Wang E, Rauworth A, Jurkowski J. Physical activity participation among persons with disabilities: barriers and facilitators. Am J Prev Med. 2004;26(5):419–25. doi: 10.1016/j.amepre.2004.02.002.
    1. Katz-Leurer M, Rotem H, Keren O, Meyer S. Balance abilities and gait characteristics in post-traumatic brain injury, cerebral palsy and typically developed children. Dev Neurorehabil. 2009;12(2):100–5. doi: 10.1080/17518420902800928.
    1. Katz-Leurer M, Rotem H, Lewitus H, Keren O, Meyer S. Relationship between balance abilities and gait characteristics in children with post-traumatic brain injury. Brain Inj. 2008;22:153–9. doi: 10.1080/02699050801895399.
    1. Anderson P. Assessment and development of executive function (EF) during childhood. Child Neuropsychol. 2002;8(2):71–82. doi: 10.1076/chin.8.2.71.8724.
    1. Limond J, Leeke R. Practitioner Review: Cognitive rehabilitation for children with acquired brain injury. J Child Psychol Psych. 2005;46(4):339–52. doi: 10.1111/j.1469-7610.2004.00397.x.
    1. Ylvisaker M, Adelson PD, Braga LW, Burnett SM, Glang A, Feeney T, et al. Rehabilitation and ongoing support after pediatric TBI: twenty years of progress. J Head Trauma Rehabil. 2005;20(1):95–109. doi: 10.1097/00001199-200501000-00009.
    1. Chan RCK, Shum D, Toulopoulou T, Chen EYH. Assessment of executive functions: review of instruments and identification of critical issues. Arch Clin Neuropsych. 2008;23(2):201–16. doi: 10.1016/j.acn.2007.08.010.
    1. Karman N, Maryles J, Baker RW, Simpser E, Berger-Gross P. Constraint-induced movement therapy for hemiplegic children with acquired brain injuries. J Head Trauma Rehabil. 2003;18(3):259–67. doi: 10.1097/00001199-200305000-00004.
    1. Cimolin V, Beretta E, Piccinini L, Turconi AC, Locatelli F, Galli M, et al. Constraint-induced movement therapy for children with hemiplegia after traumatic brain injury: a quantitative study. J Head Trauma Rehabil. 2012;27(3):177–87. doi: 10.1097/HTR.0b013e3182172276.
    1. Willis JK, Morello A, Davie A, Rice JC, Bennett JT. Forced use treatment of childhood hemiparesis. Pediatrics. 2002;110(1):94–6. doi: 10.1542/peds.110.1.94.
    1. Deppe W, Thuemmler K, Fleischer J, Berger C, Meyer S, Wiedemann B. Modified constraint-induced movement therapy versus intensive bimanual training for children with hemiplegia - a randomized controlled trial. Clin Rehabil. 2013;27(10):909–20. doi: 10.1177/0269215513483764.
    1. Gordon A, Connelly A, Neville B, Vargha-Khadem F, Jessop N, Murphy T, et al. Modified constraint-induced movement therapy after childhood stroke. Dev Med Child Neurol. 2007;49(1):23–7. doi: 10.1017/S0012162207000072.x.
    1. Gordon AL, di Maggio A. Rehabilitation for children after acquired brain injury: current and emerging approaches. Pediatr Neurol. 2012;46(6):339–44. doi: 10.1016/j.pediatrneurol.2012.02.029.
    1. Kirton A, Chen R, Friefeld S, Gunraj C, Pontigon AM, Deveber G. Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: a randomised trial. Lancet Neurol. 2008;7(6):507–13. doi: 10.1016/S1474-4422(08)70096-6.
    1. Holsbeeke L, Ketelaar M, Schoemaker MM, Gorter JW. Capacity, capability, and performance: different constructs or three of a kind? Arch Phys Med Rehabil. 2009;90(5):849–55. doi: 10.1016/j.apmr.2008.11.015.
    1. Katz-Leurer M, Rotem H, Keren O, Meyer S. The effects of a ‘home-based’ task-oriented exercise programme on motor and balance performance in children with spastic cerebral palsy and severe traumatic brain injury. Clin Rehabil. 2009;23(8):714–24. doi: 10.1177/0269215509335293.
    1. Katz-Leurer M, Eisenstein E, Liebermann DG. Feasibility of motor capability training at home in children with acquired brain injury. Physiotherapy. 2008;94(1):71–7. doi: 10.1016/j.physio.2007.04.003.
    1. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–31.
    1. Organization WH. Global recommendations on physical activity for health. 2010.
    1. Bloemen MA, Backx FJ, Takken T, Wittink H, Benner J, Mollema J, et al. Factors associated with physical activity in children and adolescents with a physical disability: a systematic review. Dev Med Child Neurol. 2015;57(2):137–48. doi: 10.1111/dmcn.12624.
    1. Trost SG. State of the art reviews: measurement of physical activity in children and adolescents. Am J Lifestyle Med. 2007;1(4):299–314. doi: 10.1177/1559827607301686.
    1. Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37(Suppl 11):531–43. doi: 10.1249/01.mss.0000185657.86065.98.
    1. Department of Health and Ageing . Australia’s physical activity and sedentary behaviour guidelines for children: 5–12 years. Canberra: Department of Health and Ageing; 2014.
    1. Department of Health and Ageing. Australia’s Physical Activity and Sedentary Behaviour Guidelines for Young People: 13–17 years. Canberra2014.
    1. Galvin J, Froude EH, McAleer J. Children’s participation in home, school and community life after acquired brain injury. Aust Occup Ther J. 2010;57(2):118–26. doi: 10.1111/j.1440-1630.2009.00822.x.
    1. Patradoon-Ho P, Scheinberg A, Baur LA. Obesity in children and adolescents with acquired brain injury. Pediatr Rehabil. 2005;8(4):303–8. doi: 10.1080/13638490500049578.
    1. Cicerone KD, Langenbahn DM, Braden C, Malec JF, Kalmar K, Fraas M, et al. Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Arch Phys Med Rehabil. 2011;92(4):519–30. doi: 10.1016/j.apmr.2010.11.015.
    1. Robinson KE, Kaizar E, Catroppa C, Godfrey C, Yeates KO. Systematic review and meta-analysis of cognitive interventions for children with central nervous system disorders and neurodevelopmental disorders. J Pediatr Psychol. 2014;39(8):846–65. doi: 10.1093/jpepsy/jsu031.
    1. Laatsch L, Harrington D, Hotz G, Marcantuono J, Mozzoni MP, Walsh V, et al. An evidence‐based review of cognitive and behavioral rehabilitation treatment studies in children with acquired brain injury. J Head Trauma Rehabil. 2007;22(4):248–56. doi: 10.1097/01.HTR.0000281841.92720.0a.
    1. Mitchell L, Ziviani J, Oftedal S, Boyd R. The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Dev Med Child Neurol. 2012;54(7):667–71. doi: 10.1111/j.1469-8749.2011.04199.x.
    1. Galvin J, Levac D. Facilitating clinical decision-making about the use of virtual reality within paediatric motor rehabilitation: describing and classifying virtual reality systems. Dev Neurorehabil. 2011;14(2):112–22. doi: 10.3109/17518423.2010.535805.
    1. Wille D, Eng K, Holper L, Chevrier E, Hauser Y, Kiper D, et al. Virtual reality-based paediatric interactive therapy system (PITS) for improvement of arm and hand function in children with motor impairment--a pilot study. Dev Neurorehabil. 2009;12(1):44–52. doi: 10.1080/17518420902773117.
    1. Mumford N, Wilson PH. Virtual reality in acquired brain injury upper limb rehabilitation: evidence-based evaluation of clinical research. Brain Inj. 2009;23(3):179–91. doi: 10.1080/02699050802695566.
    1. Conyers J, Malkin M, Yang H. An exploratory study on the effects of nintendo wii fit balance board on balance retraining and body mass index of adolescents with a traumatic brain injury. Am J Recreat Ther. 2011;10:38–48.
    1. Tatla SK, Radomski A, Cheung J, Maron M, Jarus T. Wii-habilitation as balance therapy for children with acquired brain injury. Dev Neurorehabil. 2012;17(1):1–15. doi: 10.3109/17518423.2012.740508.
    1. Cheung J, Maron M, Tatla S, Jarus T. Virtual reality as balance rehabilitation for children with brain injury: a case study. Technol Disabil. 2013;25(3):207–19.
    1. Lohse KR, Hilderman CG, Cheung KL, Tatla S, Van der Loos HF. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One. 2014;9(3):e93318. doi: 10.1371/journal.pone.0093318.
    1. Bilde PE, Kliim-Due M, Rasmussen B, Petersen LZ, Petersen TH, Nielsen JB. Individualized, home-based interactive training of cerebral palsy children delivered through the Internet. BMC Neurol. 2011;11:32. doi: 10.1186/1471-2377-11-32.
    1. Nahum M, Lee H, Merzenich MM. Principles of neuroplasticity-based rehabilitation. Prog Brain Res. 2013;207:141–71. doi: 10.1016/B978-0-444-63327-9.00009-6.
    1. James S, Ziviani J, Ware RS, Boyd RN. Randomized controlled trial of web‐based multimodal therapy for unilateral cerebral palsy to improve occupational performance. Dev Med Child Neurol. 2015;57(6):530–8. doi: 10.1111/dmcn.12705.
    1. Lorentzen J, Greve LZ, Kliim-Due M, Rasmussen B, Bilde PE, Nielsen JB. Twenty weeks of home-based interactive training of children with cerebral palsy improves functional abilities. BMC Neurol. 2015;15:75. doi: 10.1186/s12883-015-0334-0.
    1. Deci E, Ryan R. The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychol Inq. 2000;11:227–68. doi: 10.1207/S15327965PLI1104_01.
    1. Ryan RM, Deci EL. Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp Educ Psychol. 2000;25(1):54–67. doi: 10.1006/ceps.1999.1020.
    1. Tatla SK, Sauve K, Jarus T, Virji-Babul N, Holsti L. The effects of motivating interventions on rehabilitation outcomes in children and youth with acquired brain injuries: a systematic review. Brain Inj. 2014;28(8):1022–35. doi: 10.3109/02699052.2014.890747.
    1. Law M, Baptiste S, Carswell A, McColl MA, Polatajko H, Pollock N. The Canadian occupational performance measure. 3. Toronto: CAOT Publications ACE; 1998.
    1. Miller L. Impact of mastery of motivation on occupational performance outcomes following upper limb intervention for school-aged children with congenital hemiplegia. Brisbane, Queensland: The University of Queensland; 2014.
    1. Holmefur M, Krumlinde-Sundholm L, Eliasson A. Interrater and intrarater reliability of the assisting hand assessment. Am J Occup Ther. 2007;61(1):79–84. doi: 10.5014/ajot.61.1.79.
    1. Mitchell LE, Ziviani J, Boyd RN. Variability in measuring physical activity in children with cerebral palsy. Med Sci Sports Exerc. 2015;47(1):194–200. doi: 10.1249/MSS.0000000000000374.
    1. Martin N. Test of visual-perceptual skills (non-motor) 3. Novato: Academic Therapy Publications; 2006.
    1. Van Ravesteyn NT, Dallmeijer AJ, Scholtes VA, Roorda LD, Becher JG. Measuring mobility limitations in children with cerebral palsy: interrater and intrarater reliability of a mobility questionnaire (MobQues) Dev Med Child Neurol. 2010;52(2):194–9. doi: 10.1111/j.1469-8749.2009.03341.x.
    1. Stevens K. Developing a descriptive system for a new preference-based measure of health-related quality of life for children. Qual Life Res. 2009;18(8):1105–13. doi: 10.1007/s11136-009-9524-9.
    1. Ravens-Sieberer U, Gosch A, Rajmil L, Erhart M, Bruil J, Duer W, et al. KIDSCREEN-52 quality-of-life measure for children and adolescents. Expert Rev Pharmacoecon Outcomes Res. 2005;5(3):353–64. doi: 10.1586/14737167.5.3.353.
    1. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–23. doi: 10.1111/j.1469-8749.1997.tb07414.x.
    1. Eliasson AC, Krumlinde-Sundholm L, Rosblad B, Beckung E, Arner M, Ohrvall AM, et al. The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48(7):549–54. doi: 10.1017/S0012162206001162.
    1. Australian Health Services Research Institute . AROC impairment codes - Version 4 dataset (July 2012) 2012.
    1. Wechsler D. Wechsler intelligence scale for children - fourth edition: technical and interpretative manual. San Antonio: The Psychological Corporation; 2003.
    1. Krageloh-Mann I. Imaging of early brain injury and cortical plasticity. Exp Neurol. 2004;190(Suppl 1):84–90. doi: 10.1016/j.expneurol.2004.05.037.
    1. Fiori S, Cioni G, Klingels K, Ortibus E, Van Gestel L, Rose S, et al. Reliability of a novel, semi-quantitative scale for classification of structural brain magnetic resonance imaging in children with cerebral palsy. Dev Med Child Neurol. 2014;56(9):839–45. doi: 10.1111/dmcn.12457.
    1. Fiori S, Guzzetta A, Pannek K, Ware RS, Rossi G, Klingels K, et al. Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: Relationship with hand sensorimotor function and structural connectivity. Neuroimage Clin. 2015;8:104–9. doi: 10.1016/j.nicl.2015.04.005.
    1. Msall ME, DiGaudio K, Rogers BT, LaForest S, Catanzaro NL, Campbell J, et al. The Functional Independence Measure for Children (WeeFIM). Conceptual basis and pilot use in children with developmental disabilities. Clin Pediatr (Phila) 1994;33(7):421–30. doi: 10.1177/000992289403300708.
    1. Austin CA, Slomine BS, Dematt EJ, Salorio CF, Suskauer SJ. Time to follow commands remains the most useful injury severity variable for predicting WeeFIM(R) scores 1 year after paediatric TBI. Brain Inj. 2013;27(9):1056–62. doi: 10.3109/02699052.2013.794964.
    1. Ziviani J, Ottenbacher KJ, Shephard K, Foreman S, Astbury W, Ireland P. Concurrent validity of the Functional Independence Measure for Children (WeeFIM) and the Pediatric Evaluation of Disabilities Inventory in children with developmental disabilities and acquired brain injuries. Phys Occup Ther Pediatr. 2001;21(2–3):91–101.
    1. Palisano RJ, Hanna SE, Rosenbaum PL, Russell DJ, Walter SD, Wood EP, et al. Validation of a model of gross motor function for children with cerebral palsy. Phys Ther. 2000;80(10):974–85.
    1. Morris C, Galuppi BE, Rosenbaum PL. Reliability of family report for the gross motor function classification system. Dev Med Child Neurol. 2004;46(7):455–60. doi: 10.1111/j.1469-8749.2004.tb00505.x.
    1. Morris C, Kurinczuk JJ, Fitzpatrick R, Rosenbaum PL. Reliability of the manual ability classification system for children with cerebral palsy. Dev Med Child Neurol. 2006;48(12):950–3. doi: 10.1017/S001216220600209X.
    1. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. doi: 10.1016/0028-3932(71)90067-4.
    1. Feys H, Klingels K, Desloovere K, Huenaerts C, Eyssen M, Molenaers G, et al. Reliability of a clinical assessment of sensory function for the upper limb in children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2005;47:20.
    1. Klingels K, De Cock P, Molenaers G, Desloovere K, Huenaerts C, Jaspers E, et al. Upper limb motor and sensory impairments in children with hemiplegic cerebral palsy. Can they be measured reliably? Disabil Rehabil. 2010;32(5):409–16. doi: 10.3109/09638280903171469.
    1. Mackinnon SE, Dellon AL. Two-point discrimination tester. J Hand Surg-Am. 1985;10A(6):906–7. doi: 10.1016/S0363-5023(85)80173-8.
    1. Gordon AM. Relation between clinical measures and fine manipulative control in children with hemiplegic cerebral palsy. Dev Med Child Neurol. 1999;41(9):586–91. doi: 10.1017/S0012162299001231.
    1. Miller KJ, Phillips BA, Martin CL, Wheat HE, Goodwin AW, Galea MP. The AsTex: clinimetric properties of a new tool for evaluating hand sensation following stroke. Clin Rehabil. 2009;23(12):1104–15. doi: 10.1177/0269215509342331.
    1. Woods BT, Teuber HL. Mirror movements after childhood hemiparesis. Neurology. 1978;28(11):1152–7. doi: 10.1212/WNL.28.11.1152.
    1. Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. J Hand Surg-Am. 1984;9(2):222–6. doi: 10.1016/S0363-5023(84)80146-X.
    1. Vance A, Silk T, Casey M, Rinehart NJ, Bradshaw JL, Bellgrove MA, et al. Right parietal dysfunction in children with attention deficit hyperactivity disorder, combined type: a functional MRI study. Mol Psychiatr. 2007;12(9):826–32. doi: 10.1038/sj.mp.4001999.
    1. Waites A, Stanislavsky A, Abbott D, Jackson G. The effect of prior cognitive state on resting state networks measured with functional connectivity. Hum Brain Mapp. 2005;24(1):59–68. doi: 10.1002/hbm.20069.
    1. Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. Neuroimage. 2007;35(4):1459–72. doi: 10.1016/j.neuroimage.2007.02.016.
    1. Tournier JD, Calamante F, Gadian DG, Connelly A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage. 2004;23(3):1176–85. doi: 10.1016/j.neuroimage.2004.07.037.
    1. Tournier JD, Yeh CH, Calamante F, Cho KH, Connelly A, Lin CP. Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data. Neuroimage. 2008;42(2):617–25. doi: 10.1016/j.neuroimage.2008.05.002.
    1. Pannek K, Boyd RN, Fiori S, Guzzetta A, Rose SE. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions. Neuroimage Clin. 2014;5:84–92. doi: 10.1016/j.nicl.2014.05.018.
    1. Boyd RN, Mitchell LE, James ST, Ziviani J, Sakzewski L, Smith A et al. Move it to improve it (Mitii): study protocol of a randomised controlled trial of a novel web-based multimodal training program for children and adolescents with cerebral palsy. BMJ Open. 2013;3(4). doi:10.1136/bmjopen-2013-002853
    1. Boyd RN, Ziviani J, Sakzewski L, Miller L, Bowden J, Cunnington R, et al. COMBIT: protocol of a randomised comparison trial of COMbined modified constraint induced movement therapy and bimanual intensive training with distributed model of standard upper limb rehabilitation in children with congenital hemiplegia. BMC Neurol. 2013;13:68. doi: 10.1186/1471-2377-13-68.
    1. Fisher A, Bray JK. Assessment of motor and process skills. development, standardization, and administration manual. 7. Forts Collins CO: Three Star Press; 2010.
    1. James S, Ziviani J, Ware R, Boyd RN. Test-retest reproducibility of the Assessment of Motor and Process Skills in 8–16 year old children with unilateral cerebral palsy. Phys Occup Ther Pediatr. Accepted June 2015.
    1. Verschuren O, Ketelaar M, Takken T, Van Brussel M, Helders PJ, Gorter JW. Reliability of hand-held dynamometry and functional strength tests for the lower extremity in children with Cerebral Palsy. Disabil Rehabil. 2008;30(18):1358–66. doi: 10.1080/09638280701639873.
    1. Taylor N, Sand PL, Jebsen RH. Evaluation of hand function in children. Arch Phys Med Rehabil. 1973;54(3):129–35.
    1. Charles JR, Wolf SL, Schneider JA, Gordon AM. Efficacy of a child-friendly form of constraint-induced movement therapy in hemiplegic cerebral palsy: a randomized control trial. Dev Med Child Neurol. 2006;48(8):635–42. doi: 10.1017/S0012162206001356.
    1. Gordon AM, Schneider JA, Chinnan A, Charles JR. Efficacy of a hand-arm bimanual intensive therapy (HABIT) in children with hemiplegic cerebral palsy: a randomized control trial. Dev Med Child Neurol. 2007;49(11):830–8. doi: 10.1111/j.1469-8749.2007.00830.x.
    1. Eliasson A, Shaw K, Ponten E, Boyd R, Krumlinde-Sundholm L. Feasibility of a day-camp model of modified constraint induced movement therapy with and without Botulinum Toxin A injections for children with hemiplegia. Phys Occup Ther Pediatr. 2009;29(3):311–33. doi: 10.1080/01942630903011123.
    1. Eliasson AC, Krumlinde-Sundholm L, Shaw K, Wang C. Effects of constraint-induced movement therapy in young children with hemiplegic cerebral palsy: an adapted model. Dev Med Child Neurol. 2005;47(4):266–75. doi: 10.1017/S0012162205000502.
    1. Randall M, Johnson I, Reddihough D. The Melbourne assessment of unilateral upper limb function: test administration manual. Melbourne: Royal Children’s Hospital; 1999.
    1. Bourke-Taylor H. Melbourne assessment of unilateral upper limb function: construct validity and correlation with the pediatric evaluation of disability inventory. Dev Med Child Neurol. 2003;45(2):92–6. doi: 10.1111/j.1469-8749.2003.tb00911.x.
    1. Johnson LM, Randall MJ, Reddihough DS, Oke LE, Byrt TA, Bach TM. Development of a clinical assessment of quality of movement for unilateral upper-limb function. Dev Med Child Neurol. 1994;36(11):965–73. doi: 10.1111/j.1469-8749.1994.tb11792.x.
    1. Klingels K, De Cock P, Desloovere K, Huenaerts C, Molenaers G, Van Nuland I, et al. Comparison of the Melbourne assessment of unilateral upper limb function and the quality of upper extremity skills test in hemiplegic CP. Dev Med Child Neurol. 2008;50(12):904–9. doi: 10.1111/j.1469-8749.2008.03123.x.
    1. Sakzewski L, Ziviani J, Abbott DF, Macdonell RA, Jackson GD, Boyd RN. Randomized trial of constraint-induced movement therapy and bimanual training on activity outcomes for children with congenital hemiplegia. Dev Med Child Neurol. 2011;53(4):313–20. doi: 10.1111/j.1469-8749.2010.03859.x.
    1. Randall M, Imms C, Carey LM, Pallant JF. Rasch analysis of the Melbourne assessment of unilateral upper limb function. Dev Med Child Neurol. 2014;56(7):665–72. doi: 10.1111/dmcn.12391.
    1. Delis DC, Kaplan E, Kramer JH. Delis-Kaplan Executive Function System (D-KEFS) examiner’s manual. San Antonio: The Psychological Corporation; 2001.
    1. Manly TM, Robertson IH, Anderson V, Nimmo-Smith I. TEA-Ch: Test of Everyday Attention for Children. London: Pearson Assessment; 1999.
    1. Reynolds CR. Comprehensive trail-making test: examiner’s manual. Austin: Pro-ed; 2002.
    1. Culbertson WC, Zillmer EA. Tower of London - Drexel University (TOLDXTM): technical manual. Toronto: Multi-Health Systems; 2001.
    1. Gioia G, Isquith P, Guy S, Kenworthy L. Behavior rating inventory of executive function. Odessa: Psychological Assessment Resources; 2000.
    1. Wechsler D. Wechsler intelligence scale for children - fourth edition: administration and scoring manual. New York: Psychological Corporation; 2004.
    1. Conners CK. Conner’s rating scales-revised technical manual. Toronto: Multi-Health Systems; 1997.
    1. Auld M, Boyd R, Moseley GL, Johnston L. Seeing the gaps: a systematic review of visual perception tools for children with hemiplegia. Disabil Rehabil. 2011;33(19–20):1854–65. doi: 10.3109/09638288.2010.549896.
    1. American Thoracic Society ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–7. doi: 10.1164/ajrccm.166.1.at1102.
    1. Maher CA, Williams MT, Olds TS. The six-minute walk test for children with cerebral palsy. Int J Rehabil Res. 2008;31(2):185–8. doi: 10.1097/MRR.0b013e32830150f9.
    1. Bartels B, de Groot JF, Terwee CB. The six-minute walk test in chronic pediatric conditions: a systematic review of measurement properties. Phys Ther. 2013;93(4):529–41. doi: 10.2522/ptj.20120210.
    1. Nsenga Leunkeu A, Shephard RJ, Ahmaidi S. Six-minute walk test in children with cerebral palsy gross motor function classification system levels I and II: reproducibility, validity, and training effects. Arch Phys Med Rehabil. 2012;93(12):2333–9. doi: 10.1016/j.apmr.2012.06.005.
    1. Mossberg KA, Fortini E. Responsiveness and validity of the six-minute walk test in individuals with traumatic brain injury. Phys Ther. 2012;92(5):726–33. doi: 10.2522/ptj.20110157.
    1. Williams G, Robertson V, Greenwood K, Goldie P, Morris ME. The high-level mobility assessment tool (HiMAT) for traumatic brain injury. Part 1: Item generation. Brain Inj. 2005;19(11):925–32. doi: 10.1080/02699050500058687.
    1. Williams GP, Robertson V, Greenwood KM, Goldie PA, Morris ME. The high-level mobility assessment tool (HiMAT) for traumatic brain injury. Part 2: content validity and discriminability. Brain Inj. 2005;19(10):833–43. doi: 10.1080/02699050500058711.
    1. Williams GP, Greenwood KM, Robertson VJ, Goldie PA, Morris ME. High-Level Mobility Assessment Tool (HiMAT): interrater reliability, retest reliability, and internal consistency. Phys Ther. 2006;86(3):395–400.
    1. Williams G, Robertson V, Greenwood K, Goldie P, Morris ME. The concurrent validity and responsiveness of the high-level mobility assessment tool for measuring the mobility limitations of people with traumatic brain injury. Arch Phys Med Rehabil. 2006;87(3):437–42. doi: 10.1016/j.apmr.2005.10.028.
    1. Kleffelgaard I, Roe C, Sandvik L, Hellstrom T, Soberg HL. Measurement properties of the high-level mobility assessment tool for mild traumatic brain injury. Phys Ther. 2013;93(7):900–10. doi: 10.2522/ptj.20120381.
    1. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. Mathias S, Nayak US, Isaacs B. Balance in elderly patients: the “get-up and go” test. Arch Phys Med Rehabil. 1986;67(6):387–9.
    1. Katz-Leurer M, Rotem H, Lewitus H, Keren O, Meyer S. Functional balance tests for children with traumatic brain injury: within-session reliability. Pediatr Phys Ther. 2008;20(3):254–8. doi: 10.1097/PEP.0b013e3181820dd8.
    1. Williams EN, Carroll SG, Reddihough DS, Phillips BA, Galea MP. Investigation of the timed ‘up & go’ test in children. Dev Med Child Neurol. 2005;47(8):518–24. doi: 10.1017/S0012162205001027.
    1. Krumlinde-Sundholm L, Eliasson A. Development of the assisting hand assessment: a Rasch-built measure intended for children with unilateral upper limb impairments. Scand J Occup Ther. 2003;10(1):16–26. doi: 10.1080/11038120310004529.
    1. Krumlinde-Sundholm L. Reporting outcomes of the assisting hand assessment: what scale should be used? Dev Med Child Neurol. 2012;54(9):807–8. doi: 10.1111/j.1469-8749.2012.04361.x.
    1. Gordon AM, Hung YC, Brandao M, Ferre CL, Kuo HC, Friel K, et al. Bimanual training and constraint-induced movement therapy in children with hemiplegic cerebral palsy: a randomized trial. Neurorehabil Neural Repair. 2011;25(8):692–702. doi: 10.1177/1545968311402508.
    1. Al-Oraibi S, Eliasson AC. Implementation of constraint-induced movement therapy for young children with unilateral cerebral palsy in Jordan: a home-based model. Disabil Rehabil. 2011;33(21–22):2006–12. doi: 10.3109/09638288.2011.555594.
    1. Clanchy KM, Tweedy SM, Boyd RN, Trost SG. Validity of accelerometry in ambulatory children and adolescents with cerebral palsy. Eur J Appl Physiol. 2011;111:2951–9. doi: 10.1007/s00421-011-1915-2.
    1. Tweedy SM, Trost SG. Validity of accelerometry for measurement of activity in people with brain injury. Med Sci Sports Exerc. 2005;37(9):1474–80. doi: 10.1249/.
    1. Trost SG, Pate RR, Freedson PS, Sallis JF, Taylor WC. Using objective physical activity measures with youth: How many days of monitoring are needed? Med Sci Sports Exerc. 2000;32(2):426–31. doi: 10.1097/00005768-200002000-00025.
    1. Law M, Polatajko H. The Canadian occupational performance measure: results of pilot testing. Can J Occup Ther. 1994;61(4):191–7. doi: 10.1177/000841749406100403.
    1. Dedding C, Cardol M, Eyssen I, Dekker J, Beelen A. Validity of the Canadian occupational performance measure: a client-centred outcome measurement. Clin Rehabil. 2004;18(6):660–7. doi: 10.1191/0269215504cr746oa.
    1. McColl M, Paterson M, Davies D, Doubt L, Law M. Validity and community utility of the Canadian occupational performance measure. Can J Occup Ther. 2000;67:22–30. doi: 10.1177/000841740006700105.
    1. Lowe K, Novak I, Cusick A. Low-dose/high-concentration localized botulinum toxin A improves upper limb movement and function in children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2006;48(3):170–5. doi: 10.1017/S0012162206000387.
    1. Wallen M, O’Flaherty SJ, Waugh MCA. Functional outcomes of intramuscular botulinum toxin type A and occupational therapy in the upper limbs of children with cerebral palsy: a randomized controlled trial. Arch Phys Med Rehabil. 2004;88(1):1–10. doi: 10.1016/j.apmr.2006.10.017.
    1. van Ravesteyn NT, Scholtes VA, Becher JG, Roorda LD, Verschuren O, Dallmeijer AJ. Measuring mobility limitations in children with cerebral palsy: content and construct validity of a mobility questionnaire (MobQues) Dev Med Child Neurol. 2010;52(10):e229–35. doi: 10.1111/j.1469-8749.2010.03729.x.
    1. Bedell GM. Developing a follow-up survey focused on participation of children and youth with acquired brain injuries after discharge from inpatient rehabilitation. NeuroRehabilitation. 2004;19(3):191–205.
    1. Bedell GM, Dumas HM. Social participation of children and youth with acquired brain injuries discharged from inpatient rehabilitation: a follow-up study. Brain Inj. 2004;18(1):65–82. doi: 10.1080/0269905031000110517.
    1. Bedell G. Further validation of the Child and Adolescent Scale of Participation (CASP) Dev Neurorehabil. 2009;12(5):342–51. doi: 10.3109/17518420903087277.
    1. Haley S, Coster W, Ludlow L, Haltiwanger J, Andrellos J. Pedatric Evaluation of Disability Inventory: Development, standardization, and administration manual, version 1.0. Boston: Trustees of Boston University, Health and Disability Research Institute; 1992.
    1. Coster W, Bedell G, Law M, Khetani MA, Teplicky R, Liljenquist K, et al. Psychometric evaluation of the Participation and Environment Measure for Children and Youth. Dev Med Child Neurol. 2011;53(11):1030–7. doi: 10.1111/j.1469-8749.2011.04094.x.
    1. Goodman R. The strengths and difficulties questionnaire: a research note. J Child Psychol Psych. 1997;38(5):581–6. doi: 10.1111/j.1469-7610.1997.tb01545.x.
    1. Goodman R. The extended version of the Strengths and Difficulties Questionnaire as a guide to psychiatric caseness and consequent burden. J Child Psychol Psych. 1999;40(5):791–9. doi: 10.1111/1469-7610.00494.
    1. Goodman R. Psychometric propeties of the Strengths and Difficulties Questionnaire. J Am Acad Child Adolesc Psychiatry. 2001;40:1337–45. doi: 10.1097/00004583-200111000-00015.
    1. The KIDSCREEN, Europe G. The Kidscreen Questionnaires. Quality of Life Questionnaires for Children and Adolescents. Handbook. Lengerich: Pabst Science Publishers; 2006.
    1. Stevens K. Assessing the performance of a new generic measure of health-related quality of life for children and refining it for use in health state valuation. Appl Health Econ Health Policy. 2011;9(3):157–69. doi: 10.2165/11587350-000000000-00000.
    1. Stevens K. Valuation of the Child Health Utility 9D Index. Pharmacoeconomics. 2012;30(8):729–47. doi: 10.2165/11599120-000000000-00000.
    1. Ratcliffe J, Flynn T, Terlich F, Stevens K, Brazier J, Sawyer M. Developing adolescent-specific health state values for economic evaluation: an application of profile case best-worst scaling to the Child Health Utility 9D. Pharmacoeconomics. 2012;30(8):713–27. doi: 10.2165/11597900-000000000-00000.
    1. Australian Bureau of Statistics. Census of Population and Housing: Socio-economic Indexes for Areas (SEIFA), 2006. Canberra 2008.
    1. Australian Government Department of Health. Medicare Benefits Schedule Book. Canberra, Australia 2015.
    1. Shrout P, Fleiss J. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8. doi: 10.1037/0033-2909.86.2.420.
    1. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231–40.
    1. Iverson GL, Green P. Measuring improvement or decline on the WAIS-R in inpatient psychiatry. Psychol Rep. 2001;89(2):457–62. doi: 10.2466/pr0.2001.89.2.457.
    1. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, et al. A hybrid approach to the skull stripping problem in MRI. Neuroimage. 2004;22(3):1060–75. doi: 10.1016/j.neuroimage.2004.03.032.
    1. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14(1):11–22. doi: 10.1093/cercor/bhg087.
    1. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998;17(1):87–97. doi: 10.1109/42.668698.
    1. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968–80. doi: 10.1016/j.neuroimage.2006.01.021.
    1. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, et al. Sequence-independent segmentation of magnetic resonance images. Neuroimage. 2004;23(Suppl 1):S69–84. doi: 10.1016/j.neuroimage.2004.07.016.
    1. Pannek K, Mathias JL, Bigler ED, Brown G, Taylor JD, Rose S. An automated strategy for the delineation and parcellation of commissural pathways suitable for clinical populations utilising high angular resolution diffusion imaging tractography. Neuroimage. 2010;50(3):1044–53. doi: 10.1016/j.neuroimage.2010.01.020.
    1. Pannek K, Guzzetta A, Colditz PB, Rose SE. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques. Pediatr Radiol. 2012;42(10):1169–82. doi: 10.1007/s00247-012-2427-x.
    1. Nam H, Park HJ. Distortion correction of high b-valued and high angular resolution diffusion images using iterative simulated images. Neuroimage. 2011;57(3):968–78. doi: 10.1016/j.neuroimage.2011.05.018.
    1. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62(2):782–90. doi: 10.1016/j.neuroimage.2011.09.015.
    1. Morris D, Nossin-Manor R, Taylor MJ, Sled JG. Preterm neonatal diffusion processing using detection and replacement of outliers prior to resampling. Magn Reson Med. 2011;66(1):92–101. doi: 10.1002/mrm.22786.
    1. Pannek K, Raffelt D, Bell C, Mathias JL, Rose SE. HOMOR: higher order model outlier rejection for high b-value MR diffusion data. Neuroimage. 2012;63(2):835–42. doi: 10.1016/j.neuroimage.2012.07.022.
    1. Bai Y, Alexander DC, editors. Model-based registration to correct for motion between acquisitions in diffusion MR imaging. 5th International Symposium on Biomedical Imaging: From Nano to Macro: ISBI 2008: IEEE.
    1. Leemans A, Jones DK. The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med. 2009;61(6):1336–49. doi: 10.1002/mrm.21890.
    1. Rohde G, Barnett A, Basser P, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion‐weighted MRI. Magn Reson Med. 2004;51(1):103–14. doi: 10.1002/mrm.10677.
    1. Tournier JD, Calamante F, Connelly A. MRtrix: Diffusion tractography in crossing fiber regions. Int J Imag Syst Tech. 2012;22:53–6. doi: 10.1002/ima.22005.
    1. Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks. Neuroimage. 2010;53(4):1197–207. doi: 10.1016/j.neuroimage.2010.06.041.

Source: PubMed

3
Suscribir