Superior Effects of High-Intensity Interval vs. Moderate-Intensity Continuous Training on Endothelial Function and Cardiorespiratory Fitness in Patients With Type 1 Diabetes: A Randomized Controlled Trial

Winston Boff, Antonio M da Silva, Juliano B Farinha, Josianne Rodrigues-Krause, Alvaro Reischak-Oliveira, Balduino Tschiedel, Marcia Puñales, Marcello C Bertoluci, Winston Boff, Antonio M da Silva, Juliano B Farinha, Josianne Rodrigues-Krause, Alvaro Reischak-Oliveira, Balduino Tschiedel, Marcia Puñales, Marcello C Bertoluci

Abstract

This study aimed to compare the effect of high-intensity interval training (HIIT) with moderate-intensity continuous training (MCT) on endothelial function, oxidative stress and clinical fitness in patients with type 1 diabetes. Thirty-six type 1 diabetic patients (mean age 23.5 ± 6 years) were randomized into 3 groups: HIIT, MCT, and a non-exercising group (CON). Exercise was performed in a stationary cycle ergometers during 40 min, 3 times/week, for 8 weeks at 50-85% maximal heart rate (HRmax) in HIIT and 50% HRmax in MCT. Endothelial function was measured by flow-mediated dilation (FMD) [endothelium-dependent vasodilation (EDVD)], and smooth-muscle function by nitroglycerin-mediated dilation [endothelium-independent vasodilation (EIVD)]. Peak oxygen consumption (VO2peak) and oxidative stress markers were determined before and after training. Endothelial dysfunction was defined as an increase < 8% in vascular diameter after cuff release. The trial is registered at ClinicalTrials.gov, identifier: NCT03451201. Twenty-seven patients completed the 8-week protocol, 9 in each group (3 random dropouts per group). Mean baseline EDVD was similar in all groups. After training, mean absolute EDVD response improved from baseline in HIIT: + 5.5 ± 5.4%, (P = 0.0059), but remained unchanged in MCT: 0.2 ± 4.1% (P = 0.8593) and in CON: -2.6 ± 6.4% (P = 0.2635). EDVD increase was greater in HIIT vs. MCT (P = 0.0074) and CON (P = 0.0042) (ANOVA with Bonferroni). Baseline VO2peak was similar in all groups (P = 0.96). VO2peak increased 17.6% from baseline after HIIT (P = 0.0001), but only 3% after MCT (P = 0.055); no change was detected in CON (P = 0.63). EIVD was unchanged in all groups (P = 0.18). Glycemic control was similar in all groups. In patients with type 1 diabetes without microvascular complications, 8-week HIIT produced greater improvement in endothelial function and physical fitness than MCT at a similar glycemic control.

Keywords: diabetes mellitus; endothelium; flow-mediated dilation; high-intensity interval training; microvascular complications; type 1.

Figures

FIGURE 1
FIGURE 1
Flow diagram of inclusion of patients in the study.
FIGURE 2
FIGURE 2
Flow Mediated dilation (FMD): (A) Befor and training. (B) Difference between post and pre-training.
FIGURE 3
FIGURE 3
Correlation between increase in FMD and in peak Oxygen Consumption (VO2Peak) in all patients.

References

    1. American Diabetes Association (1999). Effect of intensive diabetes treatment on carotid artery wall thickness in the epidemiology of diabetes interventions and complications. Diabetes. 48 383–390.
    1. Ashor A. W., Lara J., Siervo M., Celis-Morales C., Oggioni C., Jakovljevic D. G., et al. (2015). Exercise modalities and endothelial function: a systematic review and dose-response meta-analysis of randomized controlled trials. Sports Med. 45 279–296. 10.1007/s40279-014-0272-9
    1. Belardinelli R., Lacalaprice F., Faccenda E., Purcaro A., Perna G. (2005). Effects of short-term moderate exercise training on sexual function in male patients with chronic stable heart failure. Int. J. Cardiol. 101 83–90. 10.1016/j.ijcard.2004.05.020
    1. Bertoluci M. C., Ce G. V., da Silva A. M., Wainstein M. V., Boff W., Puñales M. (2015). Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes. World J. Diabetes 6 679–692. 10.4239/wjd.v6.i5.679
    1. Casey D. P., Ueda K., Wegman-Points L., Pierce G. L. (2017). Muscle contraction induced arterial shear stress increases endothelial nitric oxide synthase phosphorylation in humans. Am. J. Physiol. Heart Circ. Physiol. 313 H854–H859. 10.1152/ajpheart.00282.2017
    1. Ce G. V., Rohde L. E., da Silva A. M. V., Coutinho M. K. P., de Castro A. C., Bertoluci M. C. (2011). Endothelial dysfunction is related to poor glycemic control in adolescents with type 1 diabetes under 5 years of disease: evidence of metabolic memory. J. Clin. Endocrinol. Metab. 95 1493–1499. 10.1210/jc.2010-2363
    1. Corretti M. C., Anderson T. J., Benjamin E. J., Celermajer D., Charbonneau F., Creager M. A., et al. (2002). Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the international brachial artery reactivity task force. J. Am. Coll. Cardiol. 39 257–265. 10.1016/S0735-1097(01)01746-6
    1. De Nardi A. T., Tolves T., Lenzi T. L., Signori L. U., Silva A. (2018). High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: a meta-analysis. Diabetes Res. Clin. Pract. 137 149–159. 10.1016/j.diabres.2017.12.017
    1. Dopheide J. F., Rubrech J., Trumpp A., Geissler P., Zeller G. C., Schnorbus B., et al. (2017). Supervised exercise training in peripheral arterial disease increases vascular shear stress and profunda femoral artery diameter. Eur. J. Prev. Cardiol. 24 178–191. 10.1177/2047487316665231
    1. Ellman G. L. (1959). Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82 70–77. 10.1016/0003-9861(59)90090-6
    1. Fuchsjäger-Mayrl G., Pleiner J., Wiesinger G. F., Sieder A. E., Quittan M., Nuhr M. J., et al. (2002). Exercise training improves vascular endothelial function in patients with type 1 diabetes. Diabetes Care 25 1795–1801. 10.2337/diacare.25.10.1795
    1. Gaenzer H., Neumayr G., Marschang P., Sturm W., Kirchmair R., Patsch J. R. (2001). Flow-mediated vasodilation of the femoral and brachial artery induced by exercise in healthy nonsmoking and smoking men. J. Am. Coll. Cardiol. 38 1313–1319. 10.1016/S0735-1097(01)01575-3
    1. Gielen S., Schuler G., Adams V. (2010). Cardiovascular effects of exercise training: molecular mechanisms. Circulation 122 1221–1238. 10.1161/CIRCULATIONAHA.110.939959
    1. Gokce N., Keaney J. F., Jr., Hunter L. M., Watkins M. T., Nedeljkovic Z. S., Menzoian J. O., et al. (2003). Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J. Am. Coll. Cardiol. 41 1769–1775. 10.1016/S0735-1097(03)00333-4
    1. Kannel W. B., McGee D. L. (1979). Diabetes and cardiovascular risk factors: the Framingham study. Circulation 59 8–13. 10.1161/01.CIR.59.1.8
    1. Maiorana A., O’Driscoll G., Cheetham C., Dembo L., Stanton K., Goodman C., et al. (2001). The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. J. Am. Coll. Cardiol. 38 860–866. 10.1016/S0735-1097(01)01439-5
    1. Mitranun W., Deerochanawong C., Tanaka H., Suksom D. (2014). Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand. J. Med. Sci. Sports 24 e69–e76. 10.1111/sms.12112
    1. Molmen-Hansen H. E., Stolen T., Tjonna A. E., Aamot I. L., Ekeberg I. S., Tyldum G. A., et al. (2012). Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur. J. Prev. Cardiol. 19 151–160. 10.1177/1741826711400512
    1. Moser O., Tschakert G., Mueller A., Groeschl W., Pieber T. R., Obermayer-Pietsch B., et al. (2015). Effects of high-intensity interval exercise versus moderate continuous exercise on glucose homeostasis and hormone response in patients with type 1 diabetes mellitus using novel ultra-long-acting insulin. PLoS One 10:e0136489. 10.1371/journal.pone.0136489
    1. Nathan D. M., Genuth S., Lachin J., Cleary P., Crofford O., Davis M., et al. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329 977–986. 10.1056/NEJM199309303291401
    1. Newcomer S. C., Thijssen D. H., Green D. J. (2011). Effects of exercise on endothelium and endothelium/smooth muscle cross talk: role of exercise-induced hemodynamics. J. Appl. Physiol. 111 311–320. 10.1152/japplphysiol.00033.2011
    1. Ohkawa H., Ohishi N., Yagi K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95 351–358. 10.1016/0003-2697(79)90738-3
    1. Ribeiro F., Oliveira J. (2010). Effect of physical exercise and age on knee joint position sense. Arch. Gerontol. Geriatr. 51 64–67. 10.1016/j.archger.2009.07.006
    1. Ribeiro F., Ribeiro I. P., Alves A. J., do Céu Monteiro M., Oliveira N. L., Oliveira J., et al. (2013). Effects of exercise training on endothelial progenitor cells in cardiovascular disease: a systematic review. Am. J. Phys. Med. Rehabil. 92 1020–1030. 10.1097/PHM.0b013e31829b4c4f
    1. Sacks D. B., Arnold M., Bakris G. L., Bruns D. E., Horvath A. R., Kirkman M. S., et al. (2011). Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin. Chem. 57 e1–e47. 10.1373/clinchem.2010.161596
    1. Schjerve I. E., Tyldum G. A., Tjønna A. E., Stølen T., Loennechen J. P., Hansen H. E., et al. (2008). Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clin. Sci. 115 283–293. 10.1042/CS20070332
    1. Schram M. T., Chaturvedi N., Schalkwijk C., Giorgino F., Ebeling P., Fuller J. H., et al. (2003). Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes: the EURODIAB prospective complications study. Diabetes Care 26 2165–2173. 10.2337/diacare.26.7.2165
    1. Seeger J. P., Thijssen D. H., Noordam K., Cranen M. E., Hopman M. T., Nijhuis-van der Sanden M. W. (2011). Exercise training improves physical fitness and vascular function in children with type 1 diabetes. Diabetes Obes. Metab. 13 382–384. 10.1111/j.1463-1326.2011.01361.x
    1. Stehouwer C. D., Gall M. A., Twisk J. W., Knudsen E., Emeis J. J., Parving H. H. (2002). Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes 51 1157–1165. 10.2337/diabetes.51.4.1157
    1. Tjønna A. E., Lee S. J., Rognmo Ø., Stølen T. O., Bye A., Haram P. M., et al. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 118 346–354. 10.1161/CIRCULATIONAHA.108.772822
    1. Trigona B., Aggoun Y., Maggio A., Martin X. E., Marchand L. M., Beghetti M., et al. (2010). Preclinical noninvasive markers of atherosclerosis in children and adolescents with type 1 diabetes are influenced by physical activity. J. Pediatr. 157 533–539. 10.1016/j.jpeds.2010.04.023
    1. Weston K. S., Wisloff U., Coombes J. S. (2014). High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br. J. Sports Med. 48 1227–1234. 10.1136/bjsports-2013-092576
    1. Wisløff U., Støylen A., Loennechen J. P., Bruvold M., Rognmo Ø, Haram P. M., et al. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115 3086–3094. 10.1161/CIRCULATIONAHA.106.675041

Source: PubMed

3
Suscribir