Pulmonary Fibrosis in COVID-19 Survivors: Predictive Factors and Risk Reduction Strategies

Ademola S Ojo, Simon A Balogun, Oyeronke T Williams, Olusegun S Ojo, Ademola S Ojo, Simon A Balogun, Oyeronke T Williams, Olusegun S Ojo

Abstract

Although pulmonary fibrosis can occur in the absence of a clear-cut inciting agent, and without a clinically clear initial acute inflammatory phase, it is more commonly associated with severe lung injury. This may be due to respiratory infections, chronic granulomatous diseases, medications, and connective tissue disorders. Pulmonary fibrosis is associated with permanent pulmonary architectural distortion and irreversible lung dysfunction. Available clinical, radiographic, and autopsy data has indicated that pulmonary fibrosis is central to severe acute respiratory distress syndrome (SARS) and MERS pathology, and current evidence suggests that pulmonary fibrosis could also complicate infection by SARS-CoV-2. The aim of this review is to explore the current literature on the pathogenesis of lung injury in COVID-19 infection. We evaluate the evidence in support of the putative risk factors for the development of lung fibrosis in the disease and propose risk mitigation strategies. We conclude that, from the available literature, the predictors of pulmonary fibrosis in COVID-19 infection are advanced age, illness severity, length of ICU stay and mechanical ventilation, smoking and chronic alcoholism. With no proven effective targeted therapy against pulmonary fibrosis, risk reduction measures should be directed at limiting the severity of the disease and protecting the lungs from other incidental injuries.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this paper.

Copyright © 2020 Ademola S. Ojo et al.

References

    1. (WHO) WHO. Coronavirus disease 2019 (COVID-19) situation report-98 27 April 2020. WHO Bull; 2020.
    1. Zumla A., Hui D. S., Azhar E. I., Memish Z. A., Maeurer M. Reducing mortality from 2019-nCoV: host-directed therapies should be an option. The Lancet. 2020;395(10224):e35–e36. doi: 10.1016/S0140-6736(20)30305-6.
    1. Wilson M. S., Wynn T. A. Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunology. 2009;2(2):103–121. doi: 10.1038/mi.2008.85.
    1. Strieter R. M., Mehrad B. New mechanisms of pulmonary fibrosis. Chest; 2009.
    1. Taskar V., Coultas D. Exposures and idiopathic lung disease. Seminars in Respiratory and Critical Care Medicine. 2008;29(6):670–679. doi: 10.1055/s-0028-1101277.
    1. Liu J., Zheng X., Tong Q., et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. Journal of Medical Virology. 2020;92(5):491–494. doi: 10.1002/jmv.25709.
    1. Huang W. T., Akhter H., Jiang C., et al. Plasminogen activator inhibitor 1, fibroblast apoptosis resistance, and aging-related susceptibility to lung fibrosis. Experimental Gerontology. 2015;61:62–75. doi: 10.1016/j.exger.2014.11.018.
    1. Venkataraman T., Frieman M. B. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antiviral Research. 2017;143:142–150. doi: 10.1016/j.antiviral.2017.03.022.
    1. Schultz G. S., Chin G. A., Moldawer L., Diegelmann R. F. Principles of wound healing. In: Fitridge R., Thompson M., editors. Mechanisms of Vascular Disease. Adelaide (AU): University of Adelaide Press; 2011. (A Reference Book for Vascular Specialists).
    1. Sivamani R. K., Garcia M. S., Rivkah I. R. Wound re-epithelialization: modulating keratinocyte migration in wound healing. Frontiers in Bioscience. 2007;12:2849–2868.
    1. Barrientos S., Stojadinovic O., Golinko M. S., Brem H., Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair and Regeneration. 2008;16(5):585–601.
    1. Myers J. L., Katzenstein A. L. Ultrastructural evidence of alveolar epithelial injury in idiopathic bronchiolitis obliterans - organizing pneumonia. The American Journal of Pathology. 1988;132(1):102–109.
    1. Wallace W. A. H., Fitch P. M., Simpson A. J., Howie S. E. M. Inflammation-associated remodelling and fibrosis in the lung - a process and an end point. International Journal of Experimental Pathology. 2007;88(2):103–110. doi: 10.1111/j.1365-2613.2006.00515.x.
    1. Kligerman S. J., Franks T. J., Galvin J. R. From the radiologic pathology archives: organization and fibrosis as a response to lung injury in diffuse alveolar damage, organizing pneumonia, and acute fibrinous and organizing pneumonia. Radiographics. 2013;33(7):1951–1975. doi: 10.1148/rg.337130057.
    1. Sgalla G., Iovene B., Calvello M., Ori M., Varone F., Richeldi L. Idiopathic pulmonary fibrosis: pathogenesis and management. Respiratory Research. 2018;19(1):p. 32. doi: 10.1186/s12931-018-0730-2.
    1. Zhu N., Zhang D., Wang W., et al. A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine. 2020;382(8):727–733. doi: 10.1056/NEJMoa2001017.
    1. Weiss S. R., Leibowitz J. L. Advances in Virus Research. In; 2011. Coronavirus pathogenesis.
    1. Lu R., Zhao X., Li J., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574. doi: 10.1016/S0140-6736(20)30251-8.
    1. Wu F., Zhao S., Yu B., et al. Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. bioRxiv. 2020;2020 doi: 10.1101/2020.01.24.919183.919183
    1. Raj V. S., Mou H., Smits S. L., et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251–254. doi: 10.1038/nature12005.
    1. Donoghue M., Hsieh F., Baronas E., et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation Research. 2000;87(5):E1–E9. doi: 10.1161/01.RES.87.5.e1.
    1. Amarante-Mendes G. P., Adjemian S., Branco L. M., Zanetti L. C., Weinlich R., Bortoluci K. R. Pattern recognition receptors and the host cell death molecular machinery. Frontiers in Immunology. 2018;9 doi: 10.3389/fimmu.2018.02379.
    1. Lund J. M., Alexopoulou L., Sato A., et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(15):5598–5603. doi: 10.1073/pnas.0400937101.
    1. Walsh D., McCarthy J., O’Driscoll C., Melgar S. Pattern recognition receptors--Molecular orchestrators of inflammation in inflammatory bowel disease. Cytokine and Growth Factor Reviews. 2013;24(2):91–104. doi: 10.1016/j.cytogfr.2012.09.003.
    1. Mubarak A., Alturaiki W., Hemida M. G. Middle east respiratory syndrome coronavirus (mers-cov): infection, immunological response, and vaccine development. Journal of Immunology Research. 2019;2019:11. doi: 10.1155/2019/6491738.6491738
    1. de Veer M. J., Holko M., Frevel M., et al. Functional classification of interferon-stimulated genes identified using microarrays. Journal of Leukocyte Biology. 2001;69(6):912–920.
    1. Mehta P., McAuley D., Brown M., et al. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
    1. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Chien J. Y., Hsueh P. R., Cheng W. C., Yu C. J., Yang P. C. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology. 2006;11(6):715–722. doi: 10.1111/j.1440-1843.2006.00942.x.
    1. Wang J., Wang B. J., Yang J. C., et al. Advances in the research of mechanism of pulmonary fibrosis induced by Corona Virus Disease 2019 and the corresponding therapeutic measures. Zhonghua Shao Shang Za Zhi. 2020;36 doi: 10.3760/cma.j.cn501120-20200307-00132.
    1. Romagnani S. Th 1/Th2 cells. Inflammatory Bowel Diseases. 1999;5(4):285–294. doi: 10.1097/00054725-199911000-00009.
    1. Guglani L., Khader S. A. Th17 cytokines in mucosal immunity and inflammation. Current Opinion in HIV and AIDS. 2010;5(2):120–127. doi: 10.1097/COH.0b013e328335c2f6.
    1. Liu W., Fontanet A., Zhang P. H., et al. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. The Journal of Infectious Diseases. 2006;193(6):792–795. doi: 10.1086/500469.
    1. Hongying M., Zeng G., Ren X., et al. Longitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significance. Respirology. 2006;11(1):49–53. doi: 10.1111/j.1440-1843.2006.00783.x.
    1. Xie J., Hw F., Li T., Qiu Z., Han Y. Dynamic changes of T lymphocyte subsets in the long-term follow-up of severe acute respiratory syndrome patients. Acta Academiae Medicinae Sinica. 2006;28(2):253–255.
    1. Channappanavar R., Fehr A. R., Vijay R., et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19(2):181–193. doi: 10.1016/j.chom.2016.01.007.
    1. Snijder E. J., van der Meer Y., Zevenhoven-Dobbe J., et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. Journal of Virology. 2006;80(12):5927–5940. doi: 10.1128/JVI.02501-05.
    1. Pober J. S. Endothelial activation: intracellular signaling pathways. Arthritis research. 2002;4(Suppl 3):p. S109. doi: 10.1186/ar576.
    1. Baum J., Duffy H. S. Fibroblasts and myofibroblasts: what are we talking about? Journal of Cardiovascular Pharmacology. 2011;57(4):376–379. doi: 10.1097/FJC.0b013e3182116e39.
    1. Hantash B. M., Zhao L., Knowles J. A., Lorenz H. P. Adult and fetal wound healing. Frontiers in Bioscience. 2008;13(13):p. 51. doi: 10.2741/2559.
    1. Kendall R. T., Feghali-Bostwick C. A. Fibroblasts in fibrosis: novel roles and mediators. Frontiers in Pharmacology. 2014;5 doi: 10.3389/fphar.2014.00123.
    1. Richeldi L., Collard H. R., Jones M. G. Idiopathic pulmonary fibrosis. The Lancet. 2017;389(10082):1941–1952. doi: 10.1016/S0140-6736(17)30866-8.
    1. Zavadil J., Böttinger E. P. TGF- _β_ and epithelial-to-mesenchymal transitions. Oncogene. 2005;24(37):5764–5774. doi: 10.1038/sj.onc.1208927.
    1. Kalluri R., Neilson E. G. Epithelial-mesenchymal transition and its implications for fibrosis. Journal of Clinical Investigation. 2003;112(12):1776–1784. doi: 10.1172/JCI200320530.
    1. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. Journal of the American Society of Nephrology. 2004;15(1):1–12. doi: 10.1097/01.ASN.0000106015.29070.E7.
    1. Wolters P. J., Collard H. R., Jones K. D. Pathogenesis of Idiopathic Pulmonary Fibrosis. Annual Review of Pathology: Mechanisms of Disease. 2014;9(1):157–179. doi: 10.1146/annurev-pathol-012513-104706.
    1. Kim K. K., Kugler M. C., Wolters P. J., et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(35):13180–13185. doi: 10.1073/pnas.0605669103.
    1. Garantziotis S., Steele M. P., Schwartz D. A. Pulmonary fibrosis: thinking outside of the lung. Journal of Clinical Investigation. 2004;114(3):319–321. doi: 10.1172/JCI200422497.
    1. Quan T. E., Cowper S., Wu S. P., Bockenstedt L. K., Bucala R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. International Journal of Biochemistry and Cell Biology. 2004;36(4):598–606. doi: 10.1016/j.biocel.2003.10.005.
    1. Phillips R. J., Burdick M. D., Hong K., et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. The Journal of Clinical Investigation. 2004;114(3):438–446. doi: 10.1172/JCI200420997.
    1. Hashimoto N., Jin H., Liu T., Chensue S. W., Phan S. H. Bone marrow-derived progenitor cells in pulmonary fibrosis. Journal of Clinical Investigation. 2004;113(2):243–252. doi: 10.1172/JCI200418847.
    1. Classen A., Lloberas J., Celada A. Macrophage activation: classical vs. alternative. Macrophages and Dendritic Cells. 2009;531:29–43. doi: 10.1007/978-1-59745-396-7_3.
    1. Gordon S., Martinez F. O. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604. doi: 10.1016/j.immuni.2010.05.007.
    1. Shukla A., Meisler N., Cutroneo K. R. Transforming growth factor-beta: crossroad of glucocorticoid and bleomycin regulation of collagen synthesis in lung fibroblasts. Wound Repair and Regeneration. 1999;7(3):133–140. doi: 10.1046/j.1524-475X.1999.00133.x.
    1. Roberts A., Heine U., Flanders K., Sporn M. Transforming growth factor-β: major role in regulation of extracellular matrix. Annals of the New York Academy of Sciences. 1990;580:225–232.
    1. Coker R. K., Laurent G. J., Shahzeidi S., et al. Transforming growth factors-β1, -β2, and -β3 stimulate fibroblast procollagen production in vitro but are differentially expressed during bleomycin-induced lung fibrosis. The American Journal of Pathology. 1997;150:981–991.
    1. Andrae J., Gallini R., Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes and Development. 2008;22(10):1276–1312. doi: 10.1101/gad.1653708.
    1. Nishioka Y., Azuma M., Kishi M., Aono Y. Targeting platelet-derived growth factor as a therapeutic approach in pulmonary fibrosis. Journal of Medical Investigation. 2013;60(3.4):175–183. doi: 10.2152/jmi.60.175.
    1. Lee C., Li X. Platelet-derived growth factor-C and -D in the cardiovascular system and diseases. Molecular Aspects of Medicine. 2018;62:12–21. doi: 10.1016/j.mam.2017.09.005.
    1. Medamana J., Clark R. A., Butler J. Platelet-derived growth factor in heart failure. Heart Failure. 2016;243:355–369. doi: 10.1007/164_2016_80.
    1. Li X., Tjwa M., Moons L., et al. Revascularization of ischemic tissues by PDGF-CC via effects on endothelial cells and their progenitors. The Journal of Clinical Investigation. 2005;115(1):118–127. doi: 10.1172/JCI19189.
    1. Maeda A., Hiyama K., Yamakido H., Ishioka S., Yamakido M. Increased expression of platelet-derived growth factor A and insulin-like growth factor-I in BAL cells during the development of bleomycin-induced pulmonary fibrosis in mice. Chest. 1996;109(3):780–786. doi: 10.1378/chest.109.3.780.
    1. Homma S., Nagaoka I., Abe H., et al. Localization of platelet-derived growth factor and insulin-like growth factor I in the fibrotic lung. American Journal of Respiratory and Critical Care Medicine. 1995;152(6):2084–2089. doi: 10.1164/ajrccm.152.6.8520779.
    1. Gochuico B. R., Avila N. A., Chow C. K., et al. Progressive preclinical interstitial lung disease in rheumatoid arthritis. Archives of Internal Medicine. 2008;168(2):159–166. doi: 10.1001/archinternmed.2007.59.
    1. Venkataraman T., Coleman C. M., Frieman M. B. Overactive epidermal growth factor receptor signaling leads to increased fibrosis after severe acute respiratory syndrome coronavirus infection. Journal of Virology. 2017;91(12) doi: 10.1128/JVI.00182-17.
    1. Zhou S., Wang Y., Zhu T., Xia L. CT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. American Journal of Roentgenology. 2020;214(6):1287–1294. doi: 10.2214/AJR.20.22975.
    1. Pan Y., Guan H., Zhou S., et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. European Radiology. 2020;30(6):3306–3309. doi: 10.1007/s00330-020-06731-x.
    1. Tian S., Xiong Y., Liu H., et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Modern Pathology. 2020;33(6):1007–1014. doi: 10.1038/s41379-020-0536-x.
    1. Hardie W. D., Davidson C., Ikegami M., et al. EGF receptor tyrosine kinase inhibitors diminish transforming growth factor-α-induced pulmonary fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2008;294(6):L1217–L1225. doi: 10.1152/ajplung.00020.2008.
    1. Wong K. T., Antonio G. E., Hui D. S. C., et al. Severe acute respiratory syndrome: thin-section computed tomography features, temporal changes, and clinicoradiologic correlation during the convalescent period. Journal of Computer Assisted Tomography. 2004;28(6):790–795. doi: 10.1097/00004728-200411000-00010.
    1. Antonio G. E., Wong K. T., Hui D. S. C., et al. Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: preliminary experience. Radiology. 2003;228(3):810–815. doi: 10.1148/radiol.2283030726.
    1. Gu J., Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. American Journal of Pathology. 2007;170(4):1136–1147. doi: 10.2353/ajpath.2007.061088.
    1. Tse G., To K. F., Chan P. K., et al. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS) Journal of Clinical Pathology. 2004;57(3):260–265. doi: 10.1136/jcp.2003.013276.
    1. Chan K., Zheng J., Mok Y., et al. SARS: prognosis, outcome and sequelae. Respirology. 2003;8(Supplement 1):S36–S40. doi: 10.1046/j.1440-1843.2003.00522.x.
    1. Xie L., Liu Y., Fan B., et al. Dynamic changes of serum SARS-Coronavirus IgG, pulmonary function and radiography in patients recovering from SARS after hospital discharge. Respiratory Research. 2005;6(1) doi: 10.1186/1465-9921-6-5.
    1. Ng C. K., Chan J. W., Kwan T. L., et al. Six month radiological and physiological outcomes in severe acute respiratory syndrome (SARS) survivors. Thorax. 2004;59(10):889–891. doi: 10.1136/thx.2004.023762.
    1. Zhang P., Li J., Liu H., et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study. Bone Res. 2020;8(1) doi: 10.1038/s41413-020-0084-5.
    1. Das K. M., Lee E. Y., Singh R., et al. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging. 2017;27(3):342–349. doi: 10.4103/ijri.IJRI_469_16.
    1. Chen J. Y., Qiao K., Liu F., et al. Lung transplantation as therapeutic option in acute respiratory distress syndrome for COVID-19-related pulmonary fibrosis. Chinese Medical Journal. 2020;Publish Ahead of Print doi: 10.1097/CM9.0000000000000839.
    1. Ye Z., Zhang Y., Wang Y., Huang Z., Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. European Radiology. 2020;30(8):4381–4389. doi: 10.1007/s00330-020-06801-0.
    1. Nikolich-Zugich J., Knox K. S., Rios C. T., Natt B., Bhattacharya D., Fain M. J. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. GeroScience. 2020;42(2):505–514. doi: 10.1007/s11357-020-00186-0.
    1. Xu J., Gonzalez E. T., Iyer S. S., et al. Use of senescence-accelerated mouse model in bleomycin-induced lung injury suggests that bone marrow-derived cells can alter the outcome of lung injury in aged mice. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2009;64A(7):731–739. doi: 10.1093/gerona/glp040.
    1. Zhou F., Yu T., du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Liu X., Zhou H., Zhou Y., et al. Risk factors associated with disease severity and length of hospital stay in COVID-19 patients. The Journal of Infection. 2020;81(1):e95–e97. doi: 10.1016/j.jinf.2020.04.008.
    1. Grasselli G., Pesenti A., Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy. JAMA - Journal of the American Medical Association. 2020;323(16):p. 1545. doi: 10.1001/jama.2020.4031.
    1. Guan W. J., Ni Z. Y., Hu Y., et al. Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032.
    1. Grasselli G., Zangrillo A., Zanella A., et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):p. 1574. doi: 10.1001/jama.2020.5394.
    1. Oeckler R. A., Hubmayr R. D. Ventilator-associated lung injury: a search for better therapeutic targets. European Respiratory Journal. 2007;30(6):1216–1226. doi: 10.1183/09031936.00104907.
    1. Kimura S., Stoicea N., Rosero Britton B. R., Shabsigh M., Branstiter A., Stahl D. L. Preventing ventilator-associated lung injury: a perioperative perspective. Frontiers in Medicine. 2016;3 doi: 10.3389/fmed.2016.00025.
    1. Desai S. R., Wells A. U., Rubens M. B., Evans T. W., Hansell D. M. Acute respiratory distress syndrome: CT abnormalities at long-term follow-up. Radiology. 1999;210(1):29–35. doi: 10.1148/radiology.210.1.r99ja2629.
    1. Taskar V. S., Coultas D. B. Is idiopathic pulmonary fibrosis an environmental disease? Proceedings of the American Thoracic Society. 2006;3(4):293–298. doi: 10.1513/pats.200512-131TK.
    1. Strzelak A., Ratajczak A., Adamiec A., Feleszko W. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: a mechanistic review. International Journal of Environmental Research and Public Health. 2018;15(5):p. 1033. doi: 10.3390/ijerph15051033.
    1. Spira A., Beane J., Shah V., et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(27):10143–10148. doi: 10.1073/pnas.0401422101.
    1. Vardavas C. I., Nikitara K. COVID-19 and smoking: a systematic review of the evidence. Tobacco Induced Diseases. 2020;18(March) doi: 10.18332/tid/119324.
    1. Liu W., Tao Z. W., Wang L., et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chinese Medical Journal. 2020;133(9):1032–1038. doi: 10.1097/cm9.0000000000000775.
    1. Kershaw C., Guidot D. Alcoholic lung disease. Alcohol Research and Health. 2008;31(1):66–75.
    1. Sueblinvong V., Kerchberger V. E., Saghafi R., Mills S. T., Fan X., Guidot D. M. Chronic alcohol ingestion primes the lung for bleomycin-induced fibrosis in mice. Clinical and Experimental Research. 2014;38(2):336–343. doi: 10.1111/acer.12232.
    1. Simou E., Leonardi-Bee J., Britton J. The effect of alcohol consumption on the risk of ARDS: a systematic review and meta-analysis. Chest. 2018;154(1):58–68. doi: 10.1016/j.chest.2017.11.041.
    1. Costabel U., Richeldi L., du Bois R., et al. Efficacy and safety of nintedanib in patients with idiopathic pulmonary fibrosis: results of two 52-week, phase III, randomized, placebo-controlled trials (INPULSIS™) Pneumologie. 2015;69(S 01) doi: 10.1055/s-0035-1544829.
    1. King T. E., Bradford W. Z., Castro-Bernadini S., et al. The ascend study: a randomized, double-blind, placebo controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis (IPF) American Journal of Respiratory and Critical Care Medicine. 2014;189A6602
    1. Bajwah S., Higginson I. J., Ross J. R., et al. The palliative care needs for fibrotic interstitial lung disease: a qualitative study of patients, informal caregivers and health professionals. Palliative Medicine. 2013;27(9):869–876. doi: 10.1177/0269216313497226.
    1. Cai Q., Yang M., Liu D., et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering. 2020 doi: 10.1016/j.eng.2020.03.007.
    1. Grein J., Ohmagari N., Shin D., et al. Compassionate use of remdesivir for patients with severe Covid-19. The New England Journal of Medicine. 2020;382(24):2327–2336. doi: 10.1056/NEJMoa2007016.
    1. Young B. E., Ong S. W. X., Kalimuddin S., et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020;323(15):p. 1488. doi: 10.1001/jama.2020.3204.
    1. Barlow A., Landolf K. M., Barlow B., et al. Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019. Pharmacotherapy. 2020;40(5):416–437. doi: 10.1002/phar.2398.
    1. Yavuz S. Ş., Ünal S. Antiviral treatment of COVID-19. Turkish Journal Of Medical Sciences. 2020;50(SI-1):611–619. doi: 10.3906/sag-2004-145.
    1. Shakoory B., Carcillo J. A., Chatham W. W., et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial∗. Critical Care Medicine. 2016;44(2):275–281. doi: 10.1097/CCM.0000000000001402.
    1. Francesco Perrone M. C. P. Tocilizumab in COVID-19 pneumonia (TOCIVID-19) (TOCIVID-19) . 2020
    1. Russell C. D., Millar J. E., Baillie J. K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. The Lancet. 2020;395(10223):473–475. doi: 10.1016/S0140-6736(20)30317-2.
    1. Duan K., Liu B., Li C., et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences. 2020;117(17):9490–9496. doi: 10.1073/pnas.2004168117.
    1. Shen C., Wang Z., Zhao F., et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020;323(16):p. 1582. doi: 10.1001/jama.2020.4783.
    1. Wilson J. G., Liu K. D., Zhuo H., et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. The Lancet Respiratory Medicine. 2015;3(1):24–32. doi: 10.1016/S2213-2600(14)70291-7.
    1. Hoegl S., Zwissler B. Preventing ventilator-induced lung injury-what does the evidence say? Journal of Thoracic Disease. 2017;9(8):2259–2263. doi: 10.21037/jtd.2017.06.135.
    1. Willemse B. W. M., Postma D. S., Timens W., ten Hacken N. H. T. The impact of smoking cessation on respiratory symptoms, lung function, airway hyperresponsiveness and inflammation. European Respiratory Journal. 2004;23(3):464–476. doi: 10.1183/09031936.04.00012704.

Source: PubMed

3
Suscribir