Comparison Between Conventional Intervention and Non-immersive Virtual Reality in the Rehabilitation of Individuals in an Inpatient Unit for the Treatment of COVID-19: A Study Protocol for a Randomized Controlled Crossover Trial

Talita Dias da Silva, Patricia Mattos de Oliveira, Josiane Borges Dionizio, Andreia Paiva de Santana, Shayan Bahadori, Eduardo Dati Dias, Cinthia Mucci Ribeiro, Renata de Andrade Gomes, Marcelo Ferreira, Celso Ferreira, Íbis Ariana Peña de Moraes, Deise Mara Mota Silva, Viviani Barnabé, Luciano Vieira de Araújo, Heloísa Baccaro Rossetti Santana, Carlos Bandeira de Mello Monteiro, Talita Dias da Silva, Patricia Mattos de Oliveira, Josiane Borges Dionizio, Andreia Paiva de Santana, Shayan Bahadori, Eduardo Dati Dias, Cinthia Mucci Ribeiro, Renata de Andrade Gomes, Marcelo Ferreira, Celso Ferreira, Íbis Ariana Peña de Moraes, Deise Mara Mota Silva, Viviani Barnabé, Luciano Vieira de Araújo, Heloísa Baccaro Rossetti Santana, Carlos Bandeira de Mello Monteiro

Abstract

Background: The new human coronavirus that leads to COVID-19 (coronavirus disease 2019) has spread rapidly around the world and has a high degree of lethality. In more severe cases, patients remain hospitalized for several days under treatment of the health team. Thus, it is important to develop and use technologies with the aim to strengthen conventional therapy by encouraging movement, physical activity, and improving cardiorespiratory fitness for patients. In this sense, therapies for exposure to virtual reality (VR) are promising and have been shown to be an adequate and equivalent alternative to conventional exercise programs. Aim: This is a study protocol with the aim of comparing the conventional physical therapy intervention with the use of a non-immersive VR software during COVID-19 hospitalization. Methods: Fifty patients hospitalized with confirmed diagnosis of COVID-19 will be divided in two groups under physiotherapy treatment using conventional or VR intervention: Group A: participants with COVID-19 will start the first day of the protocol with VR tasks in the morning and then in the second period, in the afternoon, will perform the conventional exercises (n = 25) and Group B: participants with COVID-19 will start the first day with conventional exercises in the morning and in the second period, in the afternoon, will perform activity with VR (n = 25). All participants will be evaluated with different motor and physiologic scales before and after the treatment to measure improvements. Conclusion: Considering the importance of benefits from physical activity during hospitalization, VR software shows promise as a potential mechanism for improving physical activity. The results of this study may provide new insights into hospital rehabilitation. Trial Registration: ClinicalTrials.gov, identifier: NCT04537858. Registered on 01 September 2020.

Keywords: autonomic nervous system; coronavirus; hospitals; physical functional performance; rehabilitation; telerehabilitation; virtual reality exposure therapy.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Silva, Oliveira, Dionizio, Santana, Bahadori, Dias, Ribeiro, Gomes, Ferreira, Ferreira, Moraes, Silva, Barnabé, Araújo, Santana and Monteiro.

Figures

Figure 1
Figure 1
Representative design of the MoveHero software performed during treatment intervention, with representation of hits (bottom left figure) with sphere turning into blue with stars, and misses (bottom right figure) with a red X.
Figure 2
Figure 2
Study design.

References

    1. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European Society of Cardiology and the North American Society of pacing and electrophysiology. Circulation 93, 1043–1065.
    1. Abushakra A., Faezipour M. (2013). Augmenting breath regulation using a mobile driven virtual reality therapy framework. IEEE J. Biomed. Health Inform. 18, 746–752. 10.1109/JBHI.2013.2281195
    1. Alankus G., Lazar A., May M., Kelleher C. (2010). “Towards customizable games for stroke rehabilitation,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Atlanta, GA: ), 2113–2122.
    1. Alvarez M. P. B., Silva T. D. D., Favero F. M., Valenti V. E., Raimundo R. D., Vanderlei L. C. M., et al. . (2017). Autonomic modulation in duchenne muscular dystrophy during a computer task: a prospective control trial. PLoS ONE 12:e0169633. 10.1371/journal.pone.0169633
    1. Baig A. M., Khaleeq A., Ali U., Syeda H. (2020). Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 11, 995–998. 10.1021/acschemneuro.0c00122
    1. Bohannon R. W. (2006). Reference values for the timed up and go test: a descriptive meta-analysis. J. Geriatr. Phys. Ther. 29, 64–68. 10.1519/00139143-200608000-00004
    1. Boldrini P., Bernetti A., Fiore P., SIMFER Executive Committee (2020). Impact of COVID-19 outbreak on rehabilitation services and physical and rehabilitation medicine physicians' activities in Italy. Eur. J. Phys. Rehabil. Med. 56, 316–318. 10.23736/S1973-9087.20.06256-5
    1. Bond S., Laddu D. R., Ozemek C., Lavie C. J., Arena R. (2019). Exergaming and virtual reality for health: implications for cardiac rehabilitation. Curr. Prob. Cardiol. 46:100472. 10.1016/j.cpcardiol.2019.100472
    1. Bonnechère B., Jansen B., Omelina L., Van Sint Jan S. (2016). The use of commercial video games in rehabilitation: a systematic review. Int. J. Rehabil. Res. 39, 277–290. 10.1097/MRR.0000000000000190
    1. Brokelman R. B., Haverkamp D., van Loon C., Hol A., van Kampen A., Veth R. (2012). The validation of the visual analogue scale for patient satisfaction after total hip arthroplasty. Eur. Orthopaed. Traumatol. 3, 101–105. 10.1007/s12570-012-0100-3
    1. Chan A. W., Tetzlaff J. M., Gøtzsche P. C., Altman D. G., Mann H., Berlin J. A., et al. . (2013b). SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ 346:e7586. 10.1136/bmj.e7586
    1. Chan A. W., Tetzlaff J. M., Altman D. G., Dickersin K., Moher D. (2013a). SPIRIT 2013: new guidance for content of clinical trial protocols. Lancet 381, 91–92. 10.1016/S0140-6736(12)62160-6
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., et al. . (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507–513. 10.1016/S0140-6736(20)30211-7
    1. Coraci D., Fusco A., Frizziero A., Giovannini S., Biscotti L., Padua L. (2020). Global approaches for global challenges: the possible support of rehabilitation in the management of COVID-19. J. Med. Virol. 92, 1739–1740. 10.1002/jmv.25829
    1. Corman V. M., Landt O., Kaiser M., Molenkamp R., Meijer A., Chu D. K., et al. . (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 25:2000045. 10.2807/1560-7917.ES.2020.25.3.2000045
    1. Craig P., Dieppe P., Macintyre S., Michie S., Nazareth I., Petticrew M. (2008). Developing and evaluating complex interventions: the new Medical Research Council guidance. Int. J. Nurs. Stud. 50, 587–592. 10.1016/j.ijnurstu.2012.09.010
    1. Crocetta T. B., de Araújo L. V., Guarnieri R., Massetti T., Ferreira F. H. I. B., De Abreu L. C., et al. . (2018). Virtual reality software package for implementing motor learning and rehabilitation experiments. Virtual Reality 22, 199–209. 10.1007/s10055-017-0323-2
    1. da Silva T. D., Fontes A. M. G. G., de Oliveira-Furlan B. S., Roque T. T., Lima A. I. I., de Souza B. M. M., et al. . (2020a). Effect of combined therapy of virtual reality and transcranial direct current stimulation in children and adolescents with cerebral palsy: a study protocol for a triple-blinded randomized controlled crossover trial. Front. Neurol. 11:953. 10.3389/fneur.2020.00953
    1. da Silva T. D., Massetti T., Crocetta T. B., Monteiro C. B. M., Carll A., Vanderlei L. C. M., et al. . (2018). Heart rate variability and cardiopulmonary dysfunction in patients with duchenne muscular dystrophy: a systematic review. Pediatr. Cardiol. 39, 869–883. 10.1007/s00246-018-1881-0
    1. da Silva T. D., Ribeiro-Papa D. C., Coe S., Malheiros S. R. P., Massetti T., Meira Junior C. M., et al. . (2020b). Evaluation of speed-accuracy trade-off in a computer task to identify motor difficulties in individuals with Duchenne Muscular Dystrophy-a cross-sectional study. Res. Dev. Disabil. 96:103541. 10.1016/j.ridd.2019.103541
    1. de Freitas B. L., da Silva T. D., Crocetta T. B., Massetti T., de Araújo L. V., Coe S., et al. . (2019). Analysis of different device interactions in a virtual reality task in individuals with Duchenne muscular dystrophy—a randomized controlled trial. Front. Neurol. 10:24. 10.3389/fneur.2019.00024
    1. de Moraes Í. A. P., Monteiro C. B. D. M., Silva T. D. D., Massetti T., Crocetta T. B., de Menezes L. D. C., et al. . (2020). Motor learning and transfer between real and virtual environments in young people with autism spectrum disorder: a prospective randomized cross over controlled trial. Autism Res. 13, 307–319. 10.1002/aur.2208
    1. De Wit E., Van Doremalen N., Falzarano D., Munster V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14:523. 10.1038/nrmicro.2016.81
    1. Dias P., Silva R., Amorim P., Lains J., Roque E., Serôdio I., et al. . (2019). Using virtual reality to increase motivation in poststroke rehabilitation. IEEE Comput. Graphi. Appl. 39, 64–70. 10.1109/MCG.2018.2875630
    1. Diccini S., Pereira E. M., Im S. Y., Shida L. Y., Bettencourt A. R. (2011). Evaluation of pulse oximetry measurements in healthy subjects with nail polish. Acta Paul. Enferm. 24, 784–788. 10.1590/S0103-21002011000600009
    1. Eichhorn-Kissel J., Dassen T., Lohrmann C. (2011). Comparison of the responsiveness of the care dependency scale for rehabilitation and the Barthel Index. Clin. Rehabil. 25, 760–767. 10.1177/0269215510397558
    1. Farhat F., Hsairi I., Baati H., Smits-Engelsman B. C. M., Masmoudi K., Mchirgui R., et al. . (2016). The effect of a motor skills training program in the improvement of practiced and non-practiced tasks performance in children with developmental coordination disorder (DCD). Hum. Mov. Sci. 46, 10–22. 10.1016/j.humov.2015.12.001
    1. Fernani D. C. G. L., Prado M. T. A., da Silva T. D., Massetti T., de Abreu L. C., Magalhães F. H., et al. . (2017). Evaluation of speed-accuracy trade-off in a computer task in individuals with cerebral palsy: a cross-sectional study. BMC Neurol. 17, 1–9. 10.1186/s12883-017-0920-4
    1. Ford C. G., Manegold E. M., Randall C. L., Aballay A. M., Duncan C. L. (2018). Assessing the feasibility of implementing low-cost virtual reality therapy during routine burn care. Burns 44, 886–895. 10.1016/j.burns.2017.11.020
    1. García-Bravo S., Cuesta-Gómez A., Campuzano-Ruiz R., López-Navas M. J., Domínguez-Paniagua J., Araújo-Narváez A., et al. . (2019). Virtual reality and video games in cardiac rehabilitation programs. A systematic review. Disabil. Rehabil. 1–10. 10.1080/09638288.2019.1631892
    1. Glen K., Eston R., Loetscher T., Parfitt G. (2017). Exergaming: feels good despite working harder. PLoS ONE 12:e0186526. 10.1371/journal.pone.0186526
    1. Gomez D. H., Bagley J. R., Bolter N., Kern M., Lee C. M. (2018). Metabolic cost and exercise intensity during active virtual reality gaming. Games Health J. 7, 310–316. 10.1089/g4h.2018.0012
    1. Gosselink R., Bott J., Johnson M., Dean E., Nava S., Norrenberg M., et al. . (2008). Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on physiotherapy for critically ill patients. Intensive Care Med. 34, 1188–1199. 10.1007/s00134-008-1026-7
    1. Guan W. J., Ni Z. Y., Hu Y., Liang W. H., Ou C. Q., He J. X., et al. . (2020). Clinical characteristics of coronavirus disease 2019 in China. New Engl. J. Med. 382, 1708–1720. 10.1056/NEJMoa2002032
    1. Hagerty S. L., Williams L. M. (2020). The impact of COVID-19 on mental health: the interactive roles of brain biotypes and human connection. Brain Behav. Immun. Health 5:100078. 10.1016/j.bbih.2020.100078
    1. Herman T., Giladi N., Hausdorff J. M. (2011). Properties of the ‘timed up and go'test: more than meets the eye. Gerontology 57, 203–210. 10.1159/000314963
    1. Hermann M., Pekacka-Egli A. M., Witassek F., Baumgaertner R., Schoendorf S., Spielmanns M. (2020). Feasibility and efficacy of cardiopulmonary rehabilitation following COVID-19. Am. J. Phys. Med. Rehabil. 99, 865–869. 10.1097/PHM.0000000000001549
    1. Hoffman A. J., Brintnall R. A., Brown J. K., Von Eye A., Jones L. W., Alderink G., et al. . (2014). Virtual reality bringing a new reality to postthoracotomy lung cancer patients via a home-based exercise intervention targeting fatigue while undergoing adjuvant treatment. Cancer Nurs. 37, 23–33. 10.1097/NCC.0b013e318278d52f
    1. Houlden H., Edwards M., McNeil J., Greenwood R. (2006). Use of the Barthel Index and the Functional Independence Measure during early inpatient rehabilitation after single incident brain injury. Clin. Rehabil. 20, 153–159. 10.1191/0269215506cr917oa
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. . (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506. 10.1016/S0140-6736(20)30183-5
    1. Jelsma D., Geuze R. H., Mombarg R., Smits-Engelsman B. C. (2014). The impact of Wii Fit intervention on dynamic balance control in children with probable Developmental Coordination Disorder and balance problems. Hum. Mov. Sci. 33, 404–418. 10.1016/j.humov.2013.12.007
    1. Jung T., Moorhouse N., Shi X., Amin M. F. (2020). A virtual reality–supported intervention for pulmonary rehabilitation of patients with chronic obstructive pulmonary disease: mixed methods study. J. Med. Int. Res. 22:e14178. 10.2196/14178
    1. Karloh M., Sousa Matias T., Fleig Mayer A. (2020). The COVID-19 pandemic confronts the motivation fallacy within pulmonary rehabilitation programs. COPD 17, 343–345. 10.1080/15412555.2020.1790511
    1. Kear B. M., Guck T. P., McGaha A. L. (2017). Timed Up and Go (TUG) test: normative reference values for ages 20 to 59 years and relationships with physical and mental health risk factors. J. Primary Care Commun. Health 8, 9–13. 10.1177/2150131916659282
    1. Leal A. F., da Silva T. D., Lopes P. B., Bahadori S., de Araújo L. V., da Costa M. V. B., et al. . (2020). The use of a task through virtual reality in cerebral palsy using two different interaction devices (concrete and abstract)–a cross-sectional randomized study. J. Neuro Eng. Rehabil. 17, 1–10. 10.1186/s12984-020-00689-z
    1. Lew H. L., Oh-Park M., Cifu D. X. (2020). The war on COVID-19 pandemic: role of rehabilitation professionals and hospitals. Am. J. Phys. Med. Rehabil. 99, 571–572. 10.1097/PHM.0000000000001460
    1. Madabhavi I., Sarkar M., Kadakol N. (2020). COVID-19: a review. Monaldi Arch. Chest Dis. 90, 248–258. 10.4081/monaldi.2020.1298
    1. Madjid M., Safavi-Naeini P., Solomon S. D., Vardeny O. (2020). Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 5, 831–840. 10.1001/jamacardio.2020.1286
    1. Martins F. P. A., Massetti T., Crocetta T. B., Lopes P. B., da Silva A. A., Figueiredo E. F., et al. . (2019). Analysis of motor performance in individuals with cerebral palsy using a non-immersive virtual reality task–a pilot study. Neuropsychiatric Dis. Treat. 15, 417–428. 10.2147/NDT.S184510
    1. Mazzoleni S., Montagnani G., Vagheggini G., Buono L., Moretti F., Dario P., Ambrosino N. (2014). Interactive videogame as rehabilitation tool of patients with chronic respiratory diseases: preliminary results of a feasibility study. Respir. Med. 108, 1516–1524. 10.1016/j.rmed.2014.07.004
    1. Moraes I. A., Silva T. D., Massetti T., Menezes L. D., Ribeiro V. F., Tropiano L. M., et al. . (2019). Fractal correlations and linear analyses of heart rate variability in healthy young people with different levels of physical activity. Cardiol. Young 29, 1236–1242. 10.1017/S1047951119001793
    1. Novak S., Johnson J., Greenwood R. (1996). Barthel revisited: making guidelines work. Clin. Rehabil. 10, 128–134.
    1. Paules C. I., Marston H. D., Fauci A. S. (2020). Coronavirus infections—more than just the common cold. JAMA 323, 707–708. 10.1001/jama.2020.0757
    1. Polechoński J., Debska M., Debski P. G. (2019). Exergaming can be a health-related aerobic physical activity. BioMed Res. Int. 2019:1890527. 10.1155/2019/1890527
    1. Prado M. T. A., Fernani D. C. G. L., da Silva T. D., Smorenburg A. R., de Abreu L. C., Monteiro C. B. M. (2017). Motor learning paradigm and contextual interference in manual computer tasks in individuals with cerebral palsy. Res. Dev. Disabil. 64, 56–63. 10.1016/j.ridd.2017.03.006
    1. Rohlfs I. C. P. D.M., Rotta T. M., Luft C. D. B., Andrade A., Krebs R. J., Carvalho T. D. (2008). Brunel Mood Scale (BRUMS): an instrument for early detection of overtraining syndrome. Revista Brasileira de Medicina do Esporte 14, 176–181.
    1. Rutkowski S., Rutkowska A., Kiper P., Jastrzebski D., Racheniuk H., Turolla A., et al. . (2020). Virtual reality rehabilitation in patients with chronic obstructive pulmonary disease: a randomized controlled trial. Int. J. Chron. Obstruct. Pulmon. Dis. 15, 117–124. 10.2147/COPD.S223592
    1. Salonini E., Gambazza S., Meneghelli I., Tridello G., Sanguanini M., Cazzarolli C., et al. . (2015). Active video game playing in children and adolescents with cystic fibrosis: exercise or just fun? Respir. Care 60, 1172–1179. 10.4187/respcare.03576
    1. Schefold J. C., Wollersheim T., Grunow J. J., Luedi M. M., Z'Graggen W. J., Weber-Carstens S. (2020). Muscular weakness and muscle wasting in the critically ill. J. Cachex. Sarcopenia Muscle 11, 1399–1412. 10.1002/jcsm.12620
    1. Sheehy L. M. (2020). Considerations for postacute rehabilitation for survivors of COVID-19. JMIR Public Health Surveill. 6:e19462. 10.2196/19462
    1. Shields G. E., Wells A., Doherty P., Heagerty A., Buck D., Davies L. M. (2018). Cost-effectiveness of cardiac rehabilitation: a systematic review. Heart 104, 1403–1410. 10.1136/heartjnl-2017-312809
    1. Singhal T. (2020). A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 87, 281–286. 10.1007/s12098-020-03263-6
    1. Smith S. R., Jenq G., Claflin T., Magnant C., Haig A. J., Hurvitz E. (2020). Proposed workflow for rehabilitation in a field hospital setting during the COVID-19 pandemic. PM&R. 12, 823–828. 10.1002/pmrj.12405
    1. Smits-Engelsman B. C., Jelsma L. D., Ferguson G. D. (2017). The effect of exergames on functional strength, anaerobic fitness, balance and agility in children with and without motor coordination difficulties living in low-income communities. Hum. Mov. Sci. 55, 327–337. 10.1016/j.humov.2016.07.006
    1. Stam H., Stucki G., Bickenbach J. (2020). Covid-19 and post intensive care syndrome: a call for action. J. Rehabil. Med. 52:jrm00044. 10.2340/16501977-2677
    1. Stein J., Visco C. J., Barbuto S. (2020). Rehabilitation medicine response to the COVID-19 pandemic. Am. J. Phys. Med. Rehabil. 99, 573–557. 10.1097/PHM.0000000000001470
    1. Sties S. W., Gonzáles A. I., Netto A. S., Wittkopf P. G., Lima D. P., Carvalho T. D. (2014). Validation of the Brunel Mood Scale for cardiac rehabilitation program. Revista Brasileira de Medicina do Esporte 20, 281–284. 10.1590/1517-86922014200401999
    1. Taslimipour S., Rojhani-Shirazi Z., Hemmati L., Rezaei I. (2020). Effects of a virtual reality dance training program on kyphosis angle and respiratory parameters in young women with postural hyperkyphosis: a randomized controlled clinical trial. J. Sport Rehabil. 1, 1–7. 10.1123/jsr.2019-0303
    1. Vanderlei L., Pastre C., Hoshi R., Carvalho T., Godoy M. (2009). Basic notions of heart rate variability and its clinical applicability. Brazil. J. Cardiovasc. Surg. 24, 205–217. 10.1590/s0102-76382009000200018
    1. Voutilainen A., Pitkäaho T., Kvist T., Vehviläinen-Julkunen K. (2016). How to ask about patient satisfaction? The visual analogue scale is less vulnerable to confounding factors and ceiling effect than a symmetric Likert scale. J. Adv. Nurs. 72, 946–957. 10.1111/jan.12875
    1. Weston S., Frieman M. B. (2020). COVID-19: knowns, unknowns, and questions. mSphere 5:e00203-20. 10.1128/mSphere.00203-20
    1. Williams N. (2017). The Borg rating of perceived exertion (RPE) scale. Occupat. Med. 67, 404–405. 10.1093/occmed/kqx063
    1. Wu Z., McGoogan J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323, 1239–1242. 10.1001/jama.2020.2648
    1. Yang X., Yu Y., Xu J., Shu H., Liu H., Wu Y., et al. . (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 8, 475–481. 10.1016/S2213-2600(20)30079-5
    1. Zamunér A. R., Moreno M. A., Camargo T. M., Graetz J. P., Rebelo A. C., Tamburús N. Y., da Silva E. (2011). Assessment of subjective perceived exertion at the anaerobic threshold with the Borg CR-10 scale. J. Sports Sci. Med. 10, 130–136.
    1. Zanaboni P., Dinesen B., Hjalmarsen A., Hoaas H., Holland A. E., Oliveira C. C., et al. . (2016). Long-term integrated telerehabilitation of COPD patients: a multicentre randomised controlled trial (iTrain). BMC Pulm. Med. 16:126. 10.1186/s12890-016-0288-z
    1. Zhao H. M., Xie Y. X., Wang C. (2020). Recommendations for respiratory rehabilitation in adults with coronavirus disease 2019. Chin. Med. J. 133, 1595–1602. 10.1097/CM9.0000000000000848
    1. Zhong L., Chuan J., Gong B. O., Shuai P., Zhou Y., Zhang Y., et al. . (2020). Detection of serum IgM and IgG for COVID-19 diagnosis. Sci. China Life Sci. 63, 777–780. 10.1007/s11427-020-1688-9
    1. Zhou M., Zhang X., Qu J. (2020). Coronavirus disease 2019 (COVID-19): a clinical update. Front. Med. 14, 126–135. 10.1007/s11684-020-0767-8

Source: PubMed

3
Suscribir