Effects of Three Motivationally Targeted Mobile Device Applications on Initial Physical Activity and Sedentary Behavior Change in Midlife and Older Adults: A Randomized Trial

Abby C King, Eric B Hekler, Lauren A Grieco, Sandra J Winter, Jylana L Sheats, Matthew P Buman, Banny Banerjee, Thomas N Robinson, Jesse Cirimele, Abby C King, Eric B Hekler, Lauren A Grieco, Sandra J Winter, Jylana L Sheats, Matthew P Buman, Banny Banerjee, Thomas N Robinson, Jesse Cirimele

Abstract

Background: While there has been an explosion of mobile device applications (apps) promoting healthful behaviors, including physical activity and sedentary patterns, surprisingly few have been based explicitly on strategies drawn from behavioral theory and evidence.

Objective: This study provided an initial 8-week evaluation of three different customized physical activity-sedentary behavior apps drawn from conceptually distinct motivational frames in comparison with a commercially available control app.

Study design and methods: Ninety-five underactive adults ages 45 years and older with no prior smartphone experience were randomized to use an analytically framed app, a socially framed app, an affectively framed app, or a diet-tracker control app. Daily physical activity and sedentary behavior were measured using the smartphone's built-in accelerometer and daily self-report measures.

Results: Mixed-effects models indicated that, over the 8-week period, the social app users showed significantly greater overall increases in weekly accelerometry-derived moderate to vigorous physical activity relative to the other three arms (P values for between-arm differences = .04-.005; Social vs. Control app: d = 1.05, CI = 0.44,1.67; Social vs. Affect app: d = 0.89, CI = 0.27,1.51; Social vs. Analytic app: d = 0.89, CI = 0.27,1.51), while more variable responses were observed among users of the other two motivationally framed apps. Social app users also had significantly lower overall amounts of accelerometry-derived sedentary behavior relative to the other three arms (P values for between-arm differences = .02-.001; Social vs. Control app: d = 1.10,CI = 0.48,1.72; Social vs. Affect app: d = 0.94, CI = 0.32,1.56; Social vs. Analytic app: d = 1.24, CI = 0.59,1.89). Additionally, Social and Affect app users reported lower overall sitting time compared to the other two arms (P values for between-arm differences < .001; Social vs. Control app: d = 1.59,CI = 0.92, 2.25; Social vs. Analytic app: d = 1.89,CI = 1.17, 2.61; Affect vs. Control app: d = 1.19,CI = 0.56, 1.81; Affect vs. Analytic app: d = 1.41,CI = 0.74, 2.07).

Conclusion: The results provide initial support for the use of a smartphone-delivered social frame in the early induction of both physical activity and sedentary behavior changes. The information obtained also sets the stage for further investigation of subgroups that might particularly benefit from different motivationally framed apps in these two key health promotion areas.

Trial registration: ClinicalTrials.gov NCT01516411.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Study Enrollment and Retention Flowchart.
Fig 1. Study Enrollment and Retention Flowchart.
Fig 2. Changes in Accelerometer-Derived MVPA by…
Fig 2. Changes in Accelerometer-Derived MVPA by Study Arm.
Fig 3. Changes in Accelerometer-derived Sedentary Behavior…
Fig 3. Changes in Accelerometer-derived Sedentary Behavior by Study Arm.
Fig 4. Changes in EMA-Assessed Sitting Time…
Fig 4. Changes in EMA-Assessed Sitting Time by Study Arm.

References

    1. Maibach E, Steg L, Anable J. Promoting physical activity and reducing climate change: opportunities to replace short car trips with active transportation. Prev Med. 2009;49(4):326–7. Epub 2009/07/14. doi: S0091-7435(09)00332-6 [pii] 10.1016/j.ypmed.2009.06.028 .
    1. Norman GJ, Zabinski MF, Adams MA, Rosenberg DE, Yaroch AL, Atienza AA. A review of eHealth interventions for physical activity and dietary behavior change. Am J Prev Med. 2007;33(4):336–45. Epub 2007/09/25. doi: S0749-3797(07)00363-7 [pii] 10.1016/j.amepre.2007.05.007 .
    1. Spring B, Gotsis M, Paiva A, Spruijt-Metz D. Healthy apps: mobile devices for continuous monitoring and intervention. IEEE pulse. 2013;4(6):34–40. 10.1109/MPUL.2013.2279620 .
    1. Bassett DR Jr., Wyatt HR, Thompson H, Peters JC, Hill JO. Pedometer-measured physical activity and health behaviors in U.S. adults. Med Sci Sports Exerc. 2010;42(10):1819–25. 10.1249/MSS.0b013e3181dc2e54
    1. Pew Research Center. U.S. Smartphone Use in 2015 : Pew Research Center; 2015 [updated April 1, 2015].
    1. Middelweerd A, Mollee JS, van der Wal CN, Brug J, Te Velde SJ. Apps to promote physical activity among adults: a review and content analysis. Int J Behav Nutr Phys Act. 2014;11:97 10.1186/s12966-014-0097-9
    1. Direito A, Dale LP, Shields E, Dobson R, Whittaker R, Maddison R. Do physical activity and dietary smartphone applications incorporate evidence-based behaviour change techniques? BMC Public Health. 2014;14:646 10.1186/1471-2458-14-646
    1. King AC, Glanz K, Patrick K. Technologies to measure and modify physical activity and eating environments. Am J Prev Med. 2015;48(5):630–8. 10.1016/j.amepre.2014.10.005
    1. Burke LE, Ma J, Azar KM, Bennett GG, Peterson ED, Zheng Y, et al. Current science on consumer use of mobile health for cardiovascular disease prevention: A scientific statement from the American Heart Association. Circulation. 2015. doi: 10.1161/CIR.0000000000000232 .
    1. Carlson SA, Fulton JE, Schoenborn CA, Loustalot F. Trend and prevalence estimates based on the 2008 Physical Activity Guidelines for Americans. Am J Prev Med. 2010;39(4):305–13. 10.1016/j.amepre.2010.06.006 .
    1. Spring B, Schneider K, McFadden HG, Vaughn J, Kozak AT, Smith MT, et al. Multiple behavior changes in diet and activity: A randomized controlled trial using mobile technology. Archives of Internal Medicine. 2012;172(10):1–8.
    1. Bond DS, Thomas JG, Raynor HA, Moon J, Sieling J, Trautvetter J, et al. B-MOBILE—a smartphone-based intervention to reduce sedentary time in overweight/obese individuals: a within-subjects experimental trial. PLoS One. 2014;9(6):e100821 10.1371/journal.pone.0100821
    1. Efron B. Forcing a sequential experiment to be balanced. Biometrika. 1971;58:403–17.
    1. Thomas S, Reading J, Shephard RJ. Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Canadian J Sports Sci. 1992;17:338–45.
    1. Pivarnik JM, Reeves MJ, Rafferty AP. Seasonal variation in adult leisure-time physical activity. Medicine & Science in Sports & Exercise. 2003;35:1004–8.
    1. King AC, Hekler EB, Grieco LA, Winter SJ, Sheats JL, Buman MP, et al. Harnessing different motivational frames to promote daily physical activity and reduce sedentary behavior in aging adults. PLoS One. 2013;8(4):e62613 10.1371/journal.pone.0062613
    1. Hekler EB, King AC, Banerjee B, Robinson T, Alonso M, Cirimele J, et al., editors. A case study of BSUED: Behavioral Science-informed User Experience Design. Chi 2011; 2011 May 7–12, 2011; Vancouver, B.C., Canada.
    1. Physical Activity Guidelines Advisory Committee. Report of the Physical Activity Guidelines Advisory Committee, 2008. Washington, DC: U.S. Department of Health and Human Services, 2008.
    1. King AC, Goldberg JH, Salmon J, Owen N, Dunstan D, Weber D, et al. Identifying subgroups of U.S. adults at risk for prolonged television viewing to inform program development. Am J Prev Med. 2010;38(1):17–26. Epub 2010/02/02. doi: S0749-3797(09)00666-7 [pii] 10.1016/j.amepre.2009.08.032 .
    1. Bandura A. Toward a psychology of human agency. Psychol Sci. 2006;1:164–80.
    1. Umstattd MR, Wilcox S, Saunders R, Watkins K, Dowda M. Self-regulation and physical activity: the relationship in older adults. Am J Health Behav. 2008;32(2):115–24. Epub 2007/12/07. 10.5555/ajhb.2008.32.2.115 .
    1. Cialdini RB, Demaine LJ, Sagarin BJ, Barrett DW, Rhoads K, Winter PL. Managing social norms for persuasive impact. Social Influence. 2006;1(1):3–15.
    1. Gabriele JM, Walker MS, Gill DL, Harber KD, Fisher EB. Differentiated roles of social encouragement and social constraint on physical activity behavior. Ann Behav Med. 2005;29(3):210–5. .
    1. Nahum-Shani I, Hekler EB, Spruijt-Metz D. Building health behavior models to guide the development of just-in-time adaptive interventions: A pragmatic framework. Health Psychol. In press,.
    1. Hekler EB, Buman MP, Grieco L, Rosenberger M, Winter SJ, Haskell WL, et al. Validation of physical activity tracking via Android smartphones compared to ActiGraph accelerometer: Laboratory-based and free-living validation studies. JMIR. 2015;3(2): e36 10.2196/mhealth.3505. PubMed Central PMCID: PMC4414958.
    1. Frank LD, Sallis JF, Saelens BE, Leary L, Cain K, Conway TL, et al. The development of a walkability index: Application to the Neighborhood Quality of Life Study. Br J Sports Med. 2009. Epub 2009/05/02. doi: bjsm.2009.058701 [pii] 10.1136/bjsm.2009.058701 .
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8. Epub 2007/12/20. 10.1249/mss.0b013e31815a51b3 .
    1. Hekler EB, Buman MP, Dunton GF, Atienza AA, King AC. Are daily fluctuations in perceived environment associated with walking after controlling for implementation intentions? Psychology & Health. 2012;27(9):1009–20.
    1. Dunton GF, Atienza AA, Castro CM, King AC. Using ecological momentary assessment to examine antecedents and correlates of physical activity bouts in adults age 50+ years: a pilot study. Ann Behav Med. 2009;38(3):249–55. 10.1007/s12160-009-9141-4 .
    1. King AC, Ahn DK, Oliveira BM, Atienza AA, Castro CM, Gardner CD. Promoting physical activity through hand-held computer technology. Am J Prev Med. 2008;34(6):138–42.
    1. Metzler MM, Higgins DL, Beeker CG, Freudenberg N, Lantz PM, Senturia KD, et al. Addressing urban health in Detroit, New York City, and Seattle through community-based participatory research partnerships. Am J Public Health. 2003;93(5):803–11. Epub 2003/05/02. .
    1. Raudenbush SW, Xiao-Feng L. Effects of study duration, frequency of observation, and sample size on power in studies of group differences in polynomial change. Psychol Methods. 2001;6(4):387–401. .
    1. Barradas S, Riley K, Hekler EB, Winter S, Grieco L, Sheats J, et al. Understanding social support: Qualitative analysis of message board interactions within a smartphone application. 34th Annual Meeting & Scientific Sessions of the Society of Behavioral Medicine; San Francisco, CA2013.
    1. Michie S, Ashford S, Sniehotta S, Dombrowski S, Bishop A, French D. A refined taxonomy of behaviour change techniques to help people change their physical activity and healthy eating behaviours: The CALO-RE taxonomy. Psychol Health. 2011;26(11):1479–98. 10.1080/08870446.2010.540664
    1. Miller WR, Moyers TB, Ernst D, Amrhein P. Manual for the Motivational Interviewing Skill Code (MISC). The University of New Mexico: Center on Alcoholism, Substance Abuse, and Addictions, 2008.
    1. Bort-Roig J, Gilson ND, Puig-Ribera A, Contreras RS, Trost SG. Measuring and influencing physical activity with smartphone technology: a systematic review. Sports Med. 2014;44(5):671–86. 10.1007/s40279-014-0142-5 .
    1. Velicer W, Bickmore T, Byron D, Johnson J. Using relational agents in interventions for multiple risk factors. Ann Behav Med. 2011;41(suppl 1):S146.
    1. Winter SJ, Goldman Rosas L, Sheats JL, Salvo D, Romero PP, Hekler EB, et al. Testing the acceptability of smartphones to promote health behaviors among technology-naive older Latino adults. NHLBI Cardiovascular, Epidemiology, Biostatistics and Prevention Trainee Session, American Heart Association Annual meeting; March 2014; San Francisco, CA: American Heart Association; 2014.
    1. King AC, Ahn DF, Atienza AA, Kraemer HC. Exploring refinements in targeted behavioral medicine intervention to advance public health. Ann Behav Med. 2008;35(3):251–60. Epub 2008/06/24. 10.1007/s12160-008-9032-0 .
    1. King AC. Behavioral medicine in the 21st century: transforming "the Road Less Traveled" into the "American Way of Life". Ann Behav Med. 2014;47(1):71–8. 10.1007/s12160-013-9530-6
    1. Hekler EB, Buman MP, Otten J, Castro CM, Grieco L, Marcus B, et al. Determining who responds better to a computer- vs. human-delivered physical activity intervention: results from the community health advice by telephone (CHAT) trial. Int J Behav Nutr Phys Act. 2013;10:109–18. 10.1186/1479-5868-10-109
    1. Pulsford RM, Stamatakis E, Britton AR, Brunner EJ, Hillsdon M. Associations of sitting behaviours with all-cause mortality over a 16-year follow-up: the Whitehall II study. Int J Epidemiol. 2015;44(6):1909–16. 10.1093/ije/dyv191
    1. Rezende LF, Sa TH, Mielke GI, Viscondi JY, Rey-Lopez JP, Garcia LM. All-Cause Mortality Attributable to Sitting Time: Analysis of 54 Countries Worldwide. Am J Prev Med. 2016. 10.1016/j.amepre.2016.01.022 .
    1. Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998–1005. Epub 2009/04/07. 10.1249/MSS.0b013e318193035500005768-200905000-00005 [pii]. .
    1. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29. 10.1016/S0140-6736(12)61031-9
    1. Redfern J, Thiagalingam A, Jan S, Whittaker R, Hackett ML, Mooney J, et al. Development of a set of mobile phone text messages designed for prevention of recurrent cardiovascular events. European journal of preventive cardiology. 2014;21(4):492–9. 10.1177/2047487312449416 .
    1. Bickmore T, Schulman D, Yin L. Maintaining engagement in long-term interventions with relational agents. Internat J Applied Artificial Intelligence. 2010;24(6):648–66.
    1. Rosenberger ME, Buman MP, Haskell WL, McConnell MV, Carstensen LL. Twenty-four hours of sleep, sedentary behavior, and physical activity with nine wearable devices. Med Sci Sports Exerc. 2016;48(3):457–65. 10.1249/MSS.0000000000000778
    1. Larsen RN, Kingwell BA, Robinson C, Hammond L, Cerin E, Shaw JE, et al. Breaking up of prolonged sitting over three days sustains, but does not enhance, lowering of postprandial plasma glucose and insulin in overweight and obese adults. Clin Sci (Lond). 2015;129(2):117–27. 10.1042/CS20140790 .

Source: PubMed

3
Suscribir