Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults

Anurag Singh, Davide D'Amico, Pénélope A Andreux, Andréane M Fouassier, William Blanco-Bose, Mal Evans, Patrick Aebischer, Johan Auwerx, Chris Rinsch, Anurag Singh, Davide D'Amico, Pénélope A Andreux, Andréane M Fouassier, William Blanco-Bose, Mal Evans, Patrick Aebischer, Johan Auwerx, Chris Rinsch

Abstract

Targeting mitophagy to activate the recycling of faulty mitochondria during aging is a strategy to mitigate muscle decline. We present results from a randomized, placebo-controlled trial in middle-aged adults where we administer a postbiotic compound Urolithin A (Mitopure), a known mitophagy activator, at two doses for 4 months (NCT03464500). The data show significant improvements in muscle strength (∼12%) with intake of Urolithin A. We observe clinically meaningful improvements with Urolithin A on aerobic endurance (peak oxygen oxygen consumption [VO2]) and physical performance (6 min walk test) but do not notice a significant improvement on peak power output (primary endpoint). Levels of plasma acylcarnitines and C-reactive proteins are significantly lower with Urolithin A, indicating higher mitochondrial efficiency and reduced inflammation. We also examine expression of proteins linked to mitophagy and mitochondrial metabolism in skeletal muscle and find a significant increase with Urolithin A administration. This study highlights the benefit of Urolithin A to improve muscle performance.

Keywords: Mitopure; Urolithin A; aging; clinical trial; exercise performance; mitochondria; mitophagy; muscle strength.

Conflict of interest statement

Declaration of interests A.S., D.D., P.A.A., A.M.F., W.B.-B., and C.R. are employees, P.A. and C.R. are board members, and J.A. and P.A. are members of the Scientific Advisory Board of Amazentis SA, who is the sponsor of this clinical study.

Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
CONSORT diagram of participant inclusion through the clinical study The ATLAS study was a single-center, randomized, double-blind, placebo-controlled interventional clinical trial (ClinicalTrials.gov: NCT03464500) performed in untrained, overweight, middle-aged subjects (n = 88). Subjects (253) were screened during the course of the study from a single study site. From these, eighty-eight participants that met the study inclusion and exclusion criteria were randomized in the trial. Subjects were randomized to either placebo (n = 29) or 500 (n = 29) or 1,000 mg (n = 30) doses of UA intervention. The total study duration was 4 months. Nine subjects did not complete the study (n = 9 dropouts), whereas seventy-nine (n = 79) subjects successfully completed the trial duration. All randomized subjects were included in the intent-to-treat (ITT) study population (i.e., study population consisting of all randomized participants). Dietary recall questionnaires revealed no major changes in diet during the course of the study, and the subjects did not receive any additional exercise regimen. Five subjects with low compliance were excluded from the per-protocol (PP) population (n = 74; i.e., including participants with >80% compliance and completing all study visits).
Figure 2
Figure 2
Urolithin A oral administration significantly improves leg muscle strength and impacts aerobic endurance in middle-aged adults (A) At baseline and end-of-study visits, maximum strength values were calculated as the mean of the five peak torque scores (five reciprocal concentric isokinetic contractions with maximum effort) in nm for hamstring and as the one maximum score in nm for knee flexion. (B) UA significantly improved hamstring leg muscle strength at both doses (p = 0.027 compared with placebo for 500 mg UA dose; p = 0.029 compared with placebo for 1,000 mg dose). (C) Hand-grip strength was evaluated via hand-held dynamometry (5.1% improvement from baseline in 1,000 mg UA dose, p = 0.08). (D) UA 1,000 mg supplementation led to significant within-group (p 2. (E) UA-supplemented groups showed non-significant increases of ∼4% increase in peak power output from baseline. (F) UA 1,000 mg dose group showed a significant within-group increase from baseline in walking distance during the 6MWT at the end-of-study visit (p ≤ 0.008).
Figure 3
Figure 3
Effect of Urolithin A on systemic biomarkers of mitochondrial health and inflammation (A) Dose-dependent increase in plasma UA (left), UA-glucuronide (middle), and UA-sulfate (right) plasma levels comparing baseline with the last day of the 4-month treatment period for placebo, UA 500 mg, and UA 1,000 mg doses (n = 27, placebo and UA 500 mg; n = 25, UA 1,000 mg). Data represent mean ± SEM. ∗p 

Figure 4

Impact of Urolithin A intake…

Figure 4

Impact of Urolithin A intake on human skeletal muscle transcriptome (A) Venn diagram…

Figure 4
Impact of Urolithin A intake on human skeletal muscle transcriptome (A) Venn diagram summarizing gene set enrichment analysis (GSEA) results from RNA-seq data in vastus lateralis skeletal muscle. Data represent gene sets upregulated with an adjusted p value <0.1 in subjects treated with placebo or with UA at 500 and 1,000 mg for 4 months compared with baseline. (B–D) GSEA plots of the three most significant Gene Ontology (GO) pathways significantly enriched specifically in UA 500 mg group: GO_Mitochondrial protein complex (B), GO_Cytosolic Ribosome (C), and GO_Contractile fiber (D). Significant gene sets for the placebo group were filtered out to identify treatment-specific pathways. NES, normalized enriched score.

Figure 5

Urolithin A confers a proteomic…

Figure 5

Urolithin A confers a proteomic signature of improved mitochondrial metabolism and mitophagy in…

Figure 5
Urolithin A confers a proteomic signature of improved mitochondrial metabolism and mitophagy in human skeletal muscle (A) Venn diagram summarizing pathway enrichment analysis results from proteomics data in vastus lateralis skeletal muscle. Data represent upregulated pathways with an adjusted p value <0.1 in subjects treated with placebo or with UA at 500 and 1,000 mg for 4 months compared with baseline. (B and C) Dot plots showing top enriched pathways (WikiPathways 2019 Human), ranked by protein ratio, in the UA 500- (B) and UA 1,000 mg (C) groups from (A). Dot color and size indicate adjusted p value and protein count, respectively. Significant pathways for the placebo group were filtered out to identify treatment-specific pathways. (D) Western blot analysis of protein lysates from vastus lateralis skeletal-muscle biopsies in subjects treated as above. For each subject, both baseline (Pre) and end-of-the-treatment (Post) samples were run, and membranes were probed for phospho-Parkin, total Parkin, and the mitochondrial proteins ATP5A (belonging to the OXPHOS complex V), UQCRC2 (complex IV), SDHB (complex II), and NDUFB8 (complex I). Tubulin and VDAC were included as markers of total and mitochondrial protein abundance, respectively. Dashed line separates samples from individual subjects. (n = 6 Pre and Post, biologically independent samples). (E) Quantification of phospho-Parkin over Tubulin protein intensity from western blots (WBs) in (D) (n = 6). Two-sided, paired t-test. (F) Quantification of NDUFB8 (left) and SDHB (right) protein intensity, normalized over VDAC from WBs in (D) (n = 6). ∗p 
Similar articles
Cited by
References
    1. Denison H.J., Cooper C., Sayer A.A., Aihie Sayer A., Robinson S.M. Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin. Interventions Aging. 2015;10:859–869. doi: 10.2147/cia.s55842. https://www.dovepress.com/prevention-and-optimal-management-of-sarcopeni... - DOI - PMC - PubMed
    1. Kwak J.Y., Kwon K.-S. Pharmacological interventions for treatment of sarcopenia: current status of drug development for sarcopenia. Ann. Geriatr. Med. Res. 2019;23:98–104. doi: 10.4235/agmr.19.0028. - DOI - PMC - PubMed
    1. Siparsky P.N., Kirkendall D.T., Garrett W.E. Muscle changes in aging. Sports Health. 2014;6:36–40. doi: 10.1177/1941738113502296. - DOI - PMC - PubMed
    1. Goodpaster B.H., Park S.W., Harris T.B., Kritchevsky S.B., Nevitt M., Schwartz A.V., Simonsick E.M., Tylavsky F.A., Visser M., Newman A.B., for the Health ABC Study The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J. Gerontol. Ser. A. 2006;61:1059–1064. doi: 10.1093/gerona/61.10.1059. - DOI - PubMed
    1. Di Lorito C., Long A., Byrne A., Harwood R.H., Gladman J.R., Schneider S., Logan P., Bosco A., van der Wardt V. Exercise interventions for older adults: a systematic review of meta-analyses. J. Sport Health Sci. 2021;10:29–47. doi: 10.1016/j.jshs.2020.06.003. - DOI - PMC - PubMed
Show all 69 references
Publication types
Associated data
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 4
Figure 4
Impact of Urolithin A intake on human skeletal muscle transcriptome (A) Venn diagram summarizing gene set enrichment analysis (GSEA) results from RNA-seq data in vastus lateralis skeletal muscle. Data represent gene sets upregulated with an adjusted p value <0.1 in subjects treated with placebo or with UA at 500 and 1,000 mg for 4 months compared with baseline. (B–D) GSEA plots of the three most significant Gene Ontology (GO) pathways significantly enriched specifically in UA 500 mg group: GO_Mitochondrial protein complex (B), GO_Cytosolic Ribosome (C), and GO_Contractile fiber (D). Significant gene sets for the placebo group were filtered out to identify treatment-specific pathways. NES, normalized enriched score.
Figure 5
Figure 5
Urolithin A confers a proteomic signature of improved mitochondrial metabolism and mitophagy in human skeletal muscle (A) Venn diagram summarizing pathway enrichment analysis results from proteomics data in vastus lateralis skeletal muscle. Data represent upregulated pathways with an adjusted p value <0.1 in subjects treated with placebo or with UA at 500 and 1,000 mg for 4 months compared with baseline. (B and C) Dot plots showing top enriched pathways (WikiPathways 2019 Human), ranked by protein ratio, in the UA 500- (B) and UA 1,000 mg (C) groups from (A). Dot color and size indicate adjusted p value and protein count, respectively. Significant pathways for the placebo group were filtered out to identify treatment-specific pathways. (D) Western blot analysis of protein lysates from vastus lateralis skeletal-muscle biopsies in subjects treated as above. For each subject, both baseline (Pre) and end-of-the-treatment (Post) samples were run, and membranes were probed for phospho-Parkin, total Parkin, and the mitochondrial proteins ATP5A (belonging to the OXPHOS complex V), UQCRC2 (complex IV), SDHB (complex II), and NDUFB8 (complex I). Tubulin and VDAC were included as markers of total and mitochondrial protein abundance, respectively. Dashed line separates samples from individual subjects. (n = 6 Pre and Post, biologically independent samples). (E) Quantification of phospho-Parkin over Tubulin protein intensity from western blots (WBs) in (D) (n = 6). Two-sided, paired t-test. (F) Quantification of NDUFB8 (left) and SDHB (right) protein intensity, normalized over VDAC from WBs in (D) (n = 6). ∗p 

References

    1. Denison H.J., Cooper C., Sayer A.A., Aihie Sayer A., Robinson S.M. Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin. Interventions Aging. 2015;10:859–869. doi: 10.2147/cia.s55842.
    1. Kwak J.Y., Kwon K.-S. Pharmacological interventions for treatment of sarcopenia: current status of drug development for sarcopenia. Ann. Geriatr. Med. Res. 2019;23:98–104. doi: 10.4235/agmr.19.0028.
    1. Siparsky P.N., Kirkendall D.T., Garrett W.E. Muscle changes in aging. Sports Health. 2014;6:36–40. doi: 10.1177/1941738113502296.
    1. Goodpaster B.H., Park S.W., Harris T.B., Kritchevsky S.B., Nevitt M., Schwartz A.V., Simonsick E.M., Tylavsky F.A., Visser M., Newman A.B., for the Health ABC Study The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J. Gerontol. Ser. A. 2006;61:1059–1064. doi: 10.1093/gerona/61.10.1059.
    1. Di Lorito C., Long A., Byrne A., Harwood R.H., Gladman J.R., Schneider S., Logan P., Bosco A., van der Wardt V. Exercise interventions for older adults: a systematic review of meta-analyses. J. Sport Health Sci. 2021;10:29–47. doi: 10.1016/j.jshs.2020.06.003.
    1. Kell K.P., Rula E.Y. Increasing exercise frequency is associated with health and quality-of-life benefits for older adults. Qual. Life Res. 2019;28:3267–3272. doi: 10.1007/s11136-019-02264-z.
    1. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039.
    1. Santanasto A.J., Coen P.M., Glynn N.W., Conley K.E., Jubrias S.A., Amati F., Strotmeyer E.S., Boudreau R.M., Goodpaster B.H., Newman A.B. The relationship between mitochondrial function and walking performance in older adults with a wide range of physical function. Exp. Gerontol. 2016;81:1–7. doi: 10.1016/j.exger.2016.04.002.
    1. Coen P.M., Jubrias S.A., Distefano G., Amati F., Mackey D.C., Glynn N.W., Manini T.M., Wohlgemuth S.E., Leeuwenburgh C., Cummings S.R., et al. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults. J. Gerontol. A. Biol. Sci. Med. Sci. 2013;68:447–455. doi: 10.1093/gerona/gls196.
    1. Migliavacca E., Tay S.K.H., Patel H.P., Sonntag T., Civiletto G., McFarlane C., Forrester T., Barton S.J., Leow M.K., Antoun E., et al. Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human sarcopenia across ethnicities. Nat. Commun. 2019;10:5808. doi: 10.1038/s41467-019-13694-1.
    1. Jacobs R.A., Fluck D., Bonne T.C., Burgi S., Christensen P.M., Toigo M., Lundby C. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J. Appl. Physiol. 2013;115:785–793. doi: 10.1152/japplphysiol.00445.2013.
    1. Balan E., Schwalm C., Naslain D., Nielens H., Francaux M., Deldicque L. Regular endurance exercise promotes fission, mitophagy, and oxidative phosphorylation in human skeletal muscle independently of age. Front. Physiol. 2019;10:1088. doi: 10.3389/fphys.2019.01088.
    1. Lo Verso F., Carnio S., Vainshtein A., Sandri M. Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity. Autophagy. 2014;10:1883–1894. doi: 10.4161/auto.32154.
    1. Tomás-Barberán F.A., Gonzalez-Sarrias A., Garcia-Villalba R., Nunez-Sanchez M.A., Selma M.V., Garcia-Conesa M.T., Espin J.C. Urolithins, the rescue of “old” metabolites to understand a “new” concept: metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol. Nutr. Food Res. 2017;61:1500901. doi: 10.1002/mnfr.201500901.
    1. Espín J.C., Larrosa M., García-Conesa M.T., Tomás-Barberán F. Biological significance of Urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evidence-Based Complement. Altern. Med. 2013;2013:e270418.
    1. D’Amico D., Andreux P.A., Valdes P., Singh A., Rinsch C., Auwerx J. Impact of the natural compound urolithin A on health, disease, and aging. Trends Mol. Med. 2021;27:687–699. doi: 10.1016/j.molmed.2021.04.009.
    1. Ryu D., Mouchiroud L., Andreux P.A., Katsyuba E., Moullan N., Nicolet-dit-Felix A.A., Williams E.G., Jha P., Lo Sasso G., Huzard D., et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 2016;22:879–888. doi: 10.1038/nm.4132.
    1. Xia B., Shi X.C., Xie B.C., Zhu M.Q., Chen Y., Chu X.Y., Cai G.H., Liu M., Yang S.Z., Mitchell G.A., et al. Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice. PLOS Biol. 2020;18:e3000688. doi: 10.1371/journal.pbio.3000688.
    1. Luan P., D’Amico D., Andreux P.A., Laurila P.P., Wohlwend M., Li H., Imamura de Lima T., Place N., Rinsch C., Zanou N., Auwerx J. Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Sci. Transl. Med. 2021;13:eabb0319. doi: 10.1126/scitranslmed.abb0319.
    1. Savi M., Bocchi L., Mena P., Dall'Asta M., Crozier A., Brighenti F., Stilli D., Del Rio D. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc. Diabetol. 2017;16:80.
    1. Tang L., Mo Y., Li Y., Zhong Y., He S., Zhang Y., Tang Y., Fu S., Wang X., Chen A. Urolithin A alleviates myocardial ischemia/reperfusion injury via PI3K/Akt pathway. Biochem. Biophys. Res. Commun. 2017;486:774–780. doi: 10.1016/j.bbrc.2017.03.119.
    1. Fang E.F., Hou Y., Palikaras K., Adriaanse B.A., Kerr J.S., Yang B., Lautrup S., Hasan-Olive M.M., Caponio D., Dan X., et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019;22:401–412. doi: 10.1038/s41593-018-0332-9.
    1. Fu X., Gong L.F., Wu Y.F., Lin Z., Jiang B.J., Wu L., Yu K.H. Urolithin A targets the PI3K/Akt/NF-κB pathways and prevents IL-1β-induced inflammatory response in human osteoarthritis: in vitro and in vivo studies. Food Funct. 2019;10:6135–6146. doi: 10.1039/c9fo01332f.
    1. Singh R., Chandrashekharappa S., Bodduluri S.R., Baby B.V., Hegde B., Kotla N.G., Hiwale A.A., Saiyed T., Patel P., Vijay-Kumar M., et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun. 2019;10:89. doi: 10.1038/s41467-018-07859-7.
    1. Guada M., Ganugula R., Vadhanam M., Ravi Kumar M.N.V. Urolithin A mitigates cisplatin-induced nephrotoxicity by inhibiting renal inflammation and apoptosis in an experimental rat model. J. Pharmacol. Exp. Ther. 2017;363:58–65. doi: 10.1124/jpet.117.242420.
    1. Zou D., Ganugula R., Arora M., Nabity M.B., Sheikh-Hamad D., Kumar M.N.V.R. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am. J. Physiol. Renal Physiol. 2019;317:F1255–F1264. doi: 10.1152/ajprenal.00346.2019.
    1. Jing T., Liao J., Shen K., Chen X., Xu Z., Tian W., Wang Y., Jin B., Pan H. Protective effect of urolithin a on cisplatin-induced nephrotoxicity in mice via modulation of inflammation and oxidative stress. Food Chem. Toxicol. 2019;129:108–114. doi: 10.1016/j.fct.2019.04.031.
    1. Andreux P.A., Blanco-Bose W., Ryu D., Burdet F., Ibberson M., Aebischer P., Auwerx J., Singh A., Rinsch C. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat. Metab. 2019;1:595–603. doi: 10.1038/s42255-019-0073-4.
    1. Liu S., D’Amico D., Shankland E., Bhayana S., Garcia J.M., Aebischer P., Rinsch C., Singh A., Marcinek D.J. Effect of urolithin A supplementation on muscle endurance and mitochondrial health in older adults: a randomized clinical trial. JAMA Netw. Open. 2022;5:e2144279. doi: 10.1001/jamanetworkopen.2021.44279.
    1. Reginster J.-Y., Beaudart C., Al-Daghri N., Avouac B., Bauer J., Bere N., Bruyere O., Cerreta F., Cesari M., Rosa M.M., et al. Update on the ESCEO recommendation for the conduct of clinical trials for drugs aiming at the treatment of sarcopenia in older adults. Aging Clin. Exp. Res. 2021;33:3–17. doi: 10.1007/s40520-020-01663-4.
    1. Perera S., Mody S.H., Woodman R.C., Studenski S.A. Meaningful change and responsiveness in common physical performance measures in older adults. J. Am. Geriatr. Soc. 2006;54:743–749. doi: 10.1111/j.1532-5415.2006.00701.x.
    1. Bohannon R.W., Crouch R. Minimal clinically important difference for change in 6-minute walk test distance of adults with pathology: a systematic review. J. Eval. Clin. Pract. 2017;23:377–381. doi: 10.1111/jep.12629.
    1. Schooneman M.G., Vaz F.M., Houten S.M., Soeters M.R. Acylcarnitines. Diabetes. 2013;62:1–8. doi: 10.2337/db12-0466.
    1. Lassale C., Batty G.D., Steptoe A., Cadar D., Akbaraly T.N., Kivimaki M., Zaninotto P. Association of 10-year C-reactive protein trajectories with markers of healthy aging: findings from the English longitudinal study of aging. J. Gerontol. A. Biol. Sci. Med. Sci. 2019;74:195–203. doi: 10.1093/gerona/gly028.
    1. Puzianowska-Kuźnicka M., Owczarz M., Wieczorowska-Tobis K., Nadrowski P., Chudek J., Slusarczyk P., Skalska A., Jonas M., Franek E., Mossakowska M. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun. Ageing. 2016;13:21. doi: 10.1186/s12979-016-0076-x.
    1. Visser M. Elevated C-reactive protein levels in overweight and obese adults. JAMA. 1999;282:2131. doi: 10.1001/jama.282.22.2131.
    1. Robinson M.M., Dasari S., Konopka A.R., Johnson M.L., Manjunatha S., Esponda R.R., Carter R.E., Lanza I.R., Nair K.S. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 2017;25:581–592. doi: 10.1016/j.cmet.2017.02.009.
    1. Ubaida-Mohien C., Lyashkov A., Gonzalez-Freire M., Tharakan R., Shardell M., Moaddel R., Semba R.D., Chia C.W., Gorospe M., Sen R., et al. Discovery proteomics in aging human skeletal muscle finds change in spliceosome, immunity, proteostasis and mitochondria. eLife. 2019;8:e49874.
    1. Miller B.F., Konopka A.R., Hamilton K.L. The rigorous study of exercise adaptations: why mRNA might not be enough. J. Appl. Physiol. 2016;121:594–596. doi: 10.1152/japplphysiol.00137.2016.
    1. Murgia M., Toniolo L., Nagaraj N., Ciciliot S., Vindigni V., Schiaffino S., Reggiani C., Mann M. Single muscle fiber proteomics reveals fiber-type-specific features of human muscle aging. Cell Rep. 2017;19:2396–2409. doi: 10.1016/j.celrep.2017.05.054.
    1. Geisler S., Vollmer S., Golombek S., Kahle P.J. The ubiquitin-conjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy. J. Cell Sci. 2014;127:3280–3293. doi: 10.1242/jcs.146035.
    1. Scott H.L., Buckner N., Fernandez-Albert F., Pedone E., Postiglione L., Shi G., Allen N., Wong L.F., Magini L., Marucci L., et al. A dual druggable genome-wide siRNA and compound library screening approach identifies modulators of parkin recruitment to mitochondria. J. Biol. Chem. 2020;295:3285–3300. doi: 10.1074/jbc.ra119.009699.
    1. Schiaffino S., Reggiani C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 2011;91:1447–1531. doi: 10.1152/physrev.00031.2010.
    1. Bournat J.C., Brown C.W. Mitochondrial dysfunction in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2010;17:446–452. doi: 10.1097/med.0b013e32833c3026.
    1. Geirsdottir O.G., Arnarson A., Ramel A., Briem K., Jonsson P.V., Thorsdottir I. Muscular strength and physical function in elderly adults 6–18 months after a 12-week resistance exercise program. Scand. J. Public Health. 2015;43:76–82. doi: 10.1177/1403494814560842.
    1. Mueller S., Winzer E.B., Duvinage A., Gevaert A.B., Edelmann F., Haller B., Pieske-Kraigher E., Beckers P., Bobenko A., Hommel J., et al. OptimEx-Clin Study Group Effect of high-intensity interval training, moderate continuous training, or guideline-based physical activity advice on peak oxygen consumption in patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2021;325:542–551. doi: 10.1001/jama.2020.26812.
    1. Kitzman D.W., Brubaker P., Morgan T., Haykowsky M., Hundley G., Kraus W.E., Eggebeen J., Nicklas B.J. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2016;315:36. doi: 10.1001/jama.2015.17346.
    1. López-Otín C., Kroemer G. Hallmarks of health. Cell. 2021;184:33–63. doi: 10.1016/j.cell.2020.11.034.
    1. Palikaras K., Lionaki E., Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 2018;20:1013–1022. doi: 10.1038/s41556-018-0176-2.
    1. Sun N., Youle R.J., Finkel T. The mitochondrial basis of aging. Mol. Cell. 2016;61:654–666. doi: 10.1016/j.molcel.2016.01.028.
    1. Elhassan Y.S., Kluckova K., Fletcher R.S., Schmidt M.S., Garten A., Doig C.L., Cartwright D.M., Oakey L., Burley C.V., Jenkinson N., et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28:1717–1728.e6. doi: 10.1016/j.celrep.2019.07.043.e6.
    1. Dollerup O.L., Chubanava S., Agerholm M., Sondergard S.D., Altintas A., Moller A.B., Hoyer K.F., Ringgaard S., Stodkilde-Jorgensen H., Lavery G.G., et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J. Physiol. 2020;598:731–754. doi: 10.1113/jp278752.
    1. Hussey S.E., Sharoff C.G., Garnham A., YI Z., Bowen B.P., Mandarino L.J., Hargreaves M. Effect of exercise on the skeletal muscle proteome in patients with type 2 diabetes. Med. Sci. Sports Exerc. 2013;45:1069–1076. doi: 10.1249/mss.0b013e3182814917.
    1. Porter C., Reidy P.T., Bhattarai N., Sidossis L.S., Rasmussen B.B. Resistance exercise training alters mitochondrial function in human skeletal muscle. Med. Sci. Sports Exerc. 2015;47:1922–1931. doi: 10.1249/mss.0000000000000605.
    1. McCann M.R., George De la Rosa M.V., Rosania G.R., Stringer K.A. L-carnitine and acylcarnitines: mitochondrial biomarkers for precision medicine. Metabolites. 2021;11:51. doi: 10.3390/metabo11010051.
    1. Darst B.F., Koscik R.L., Hogan K.J., Johnson S.C., Engelman C.D. Longitudinal plasma metabolomics of aging and sex. Aging (Albany NY) 2019;11:1262–1282. doi: 10.18632/aging.101837.
    1. Thompson Legault J., Strittmatter L., Tardif J., Sharma R., Tremblay-Vaillancourt V., Aubut C., Boucher G., Clish C., Cyr D., Daneault C., et al. A metabolic signature of mitochondrial dysfunction revealed through a monogenic form of leigh syndrome. Cell Rep. 2015;13:981–989. doi: 10.1016/j.celrep.2015.09.054.
    1. Felder T.K., Ring-Dimitriou S., Auer S., Soyal S.M., Kedenko L., Rinnerthaler M., Cadamuro J., Haschke-Becher E., Aigner E., Paulweber B., Patsch W. Specific circulating phospholipids, acylcarnitines, amino acids and biogenic amines are aerobic exercise markers. J. Sci. Med. Sport. 2017;20:700–705. doi: 10.1016/j.jsams.2016.11.011.
    1. Zampino M., Brennan N.A., Kuo P.L., Spencer R.G., Fishbein K.W., Simonsick E.M., Ferrucci L. Poor mitochondrial health and systemic inflammation? Test of a classic hypothesis in the Baltimore Longitudinal Study of Aging. GeroScience. 2020;42:1175–1182. doi: 10.1007/s11357-020-00208-x.
    1. Franceschi C., Garagnani P., Parini P., Giuliani C., Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018;14:576–590. doi: 10.1038/s41574-018-0059-4.
    1. Reid A.L., Alexander M.S. The interplay of mitophagy and inflammation in Duchenne muscular dystrophy. Life. 2021;11:648. doi: 10.3390/life11070648.
    1. Remels A.H.V., Gosker H., Bakker J., Guttridge D., Schols A., Langen R. Regulation of skeletal muscle oxidative phenotype by classical NF-κB signalling. Biochim. Biophys. Acta (Bba) - Mol. Basis Dis. 2013;1832:1313–1325. doi: 10.1016/j.bbadis.2013.03.018.
    1. Meex R.C.R., Schrauwen-Hinderling V.B., Moonen-Kornips E., Schaart G., Mensink M., Phielix E., van de Weijer T., Sels J.P., Schrauwen P., Hesselink M.K. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes. 2010;59:572–579. doi: 10.2337/db09-1322.
    1. Tharakan R., Ubaida-Mohien C., Piao Y., Gorospe M., Ferrucci L. Ribosome profiling analysis of human skeletal muscle identifies reduced translation of mitochondrial proteins with age. RNA Biol. 2021;18:1555–1559. doi: 10.1080/15476286.2021.1875647.
    1. Milburn M.V., Lawton K.A. Application of metabolomics to diagnosis of insulin resistance. Annu. Rev. Med. 2013;64:291–305. doi: 10.1146/annurev-med-061511-134747.
    1. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8.
    1. Yu G., Wang L.-G., Han Y., He Q.-Y. clusterProfiler: an R Package for comparing biological themes among gene clusters. OMICS: A J. Integr. Biol. 2012;16:284–287. doi: 10.1089/omi.2011.0118.
    1. Kelstrup C.D., Bekker-Jensen D.B., Arrey T.N., Hogrebe A., Harder A., Olsen J.V. Performance evaluation of the Q exactive HF-X for shotgun proteomics. J. Proteome Res. 2018;17:727–738. doi: 10.1021/acs.jproteome.7b00602.
    1. Bruderer R., Bernhardt O.M., Gandhi T., Xuan Y., Sondermann J., Schmidt M., Gomez-Varela D., Reiter L. Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results. Mol. Cell Proteomics. 2017;16:2296–2309. doi: 10.1074/mcp.ra117.000314.

Source: PubMed

3
Suscribir