Serum prolidase activity is associated with non-diabetic metabolic syndrome

Suzan Tabur, Elif Oguz, Mehmet Ali Eren, Hakan Korkmaz, Esen Savas, Nurten Aksoy, Tevfik Sabuncu, Suzan Tabur, Elif Oguz, Mehmet Ali Eren, Hakan Korkmaz, Esen Savas, Nurten Aksoy, Tevfik Sabuncu

Abstract

Objective: The aim of this study was to determine the role of serum prolidase activity and the possible association with oxidative stress parameters in non-diabetic metabolic syndrome.

Methods: 30 obese patients without metabolic syndrome (MetS), 34 non-diabetic obese patients with MetS, and 23 volunteer control subjects were enrolled in the study. Fasting plasma glucose (FPG), plasma glucose following 75 g glucose administration, high-density lipoprotein- cholesterol (HDL-C), high-density lipoprotein- cholesterol (LDL-C), total cholesterol, triglyceride (TG), total antioxidant status (TAS), total oxidative status (TOS), oxidative stress index (OSI), and prolidase activities of all subjects were analyzed.

Results: Prolidase levels was significantly higher in MetS group compared to both obese and control groups (p < 0.001 and p < 0.05 respectively). Prolidase was also higher in the obese group than in the control group (p < 0.05). Prolidase was negatively correlated with TAS and HDL-C (r = -0,362, p < 0.001; r = -0.320, p < 0.01, respectively) and positively correlated with BMI, weight, waist-c, SBP, DBP, TG, TC, LDL-C.

Conclusion: Prolidase activity may have a role in the pathogenesis of metabolic syndrome.

Keywords: Metabolic syndrome; Non-diabetic; Obesity; Prolidase.

References

    1. Third report of the National Cholesterol Education Program (NCEP), Expert panel on the detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Final report. II Rationale for interventionCirculation 2002, 106:3143–3421.
    1. Msra A, Khurana L. Obesity and metabolic syndrome in developing countries. J Clin Endocrinol Metab. 2008;93:9–30. doi: 10.1210/jc.2008-1595.
    1. Hopps E, Caimi G. Matrix metalloproteinases in metabolic syndrome. Eur J Intern Med. 2012;23:99–104. doi: 10.1016/j.ejim.2011.09.012.
    1. Surazynski A, Miltyk W, Palka J, Phang JM. Prolidase-dependent regulation of collagen biosynthesis. Amino Acids. 2008;35:731–738. doi: 10.1007/s00726-008-0051-8.
    1. Zanaboni G, Dyne KM, Rossi A, Monafo V, Cetta G. Prolidase deficiency: biochemical study of erythrocyte and skin fibroblast prolidase activity in Italian patients. Haematologica. 1994;79:13–18.
    1. Liu G, Nakayama K, Awata S, Tang S, Kitaoka N, Manabe M, et al. Prolidase isoenzymes in the rat: their organ distribution, developmental change and specific inhibitors. Pediatr Res. 2007;62:54–59. doi: 10.1203/PDR.0b013e3180676d05.
    1. Myara I, Myara A, Mangeot M, Fabre M, Charpentier C, Lemonnier A. Plasma prolidase activity: a possible index of collagen catabolism in chronic liver disease. Clin Chem. 1984;30:211–215.
    1. Erbagci AB, Araz M, Erbagci A, Tarakcioglu M, Namiduru ES. Serum prolidase activity as a marker of osteoporosis in type 2 diabetes mellitus. Clin Biochem. 2002;35:263–268. doi: 10.1016/S0009-9120(02)00305-3.
    1. Altindag O, Erel O, Aksoy N, Selek S, Celik H, Karaoglanoglu M. Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis. Rheumatol Int. 2007;27:339–344. doi: 10.1007/s00296-006-0247-8.
    1. Gejyo F, Kishore BK, Arakawa M. Prolidase and prolinase activities in the erythrocytes of patients with chronic uremia. Nephron. 1983;35:58–61. doi: 10.1159/000183046.
    1. Demirbag R, Yildiz A, Gur M, Yilmaz R, Elci K, Aksoy N. Serum prolidase activity in patients with hypertension and its relation with left ventricular hypertrophy. Clin Biochem. 2007;40:1020–1025. doi: 10.1016/j.clinbiochem.2007.05.015.
    1. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37:112–119. doi: 10.1016/j.clinbiochem.2003.10.014.
    1. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38:1103–1111. doi: 10.1016/j.clinbiochem.2005.08.008.
    1. Ozcan O, Gultepe M, Ipcioglu OM, Bolat B, Kayadibi H. Optimization of the photometric enzyme activity assay for evaluating real activity of prolidase. Turk J Biochem. 2007;32:12–16.
    1. Gultepe M, Ozcan O, Bolat B, Kayadibi H, Ipcıoglu OM. Measured prolidase activity versus physiological activity of the enzyme: inhibitory effect of proline. FEBS J. 2006;273:75.
    1. Myara I, Charpentier C, Lemonnier A. Optimal conditions for prolidase assay by proline colorimetric determination: application to imminodipeptiduria. Clin Chim Acta. 1982;125:193–205. doi: 10.1016/0009-8981(82)90196-6.
    1. Chinard FP. Photometric estimation of proline and ornithine. J Biol Chem. 1952;199:91–95.
    1. Hilali N, Vural M, Camuzcuoglu H, Camuzcuoglu A, Aksoy N. Increased prolidase activity and oxidative stress in PCOS. Clin Endocrinol (Oxf) 2013;79:105–110. doi: 10.1111/cen.12110.
    1. Uzar E, Tamam Y, Evliyaoglu O, Tuzcu A, Beyaz C, Acar A, et al. Serum prolidase activity and oxidative status in patients with diabetic neuropathy. Neurol Sci. 2012;33:875–880. doi: 10.1007/s10072-011-0857-0.
    1. Yildiz A, Demirbag R, Yilmaz R, Gur M, Altiparmak IH, Akyol S, et al. The association of serum prolidase activity with the presence and severity of coronary artery disease. Coron Artery Dis. 2008;19:319–325. doi: 10.1097/MCA.0b013e32830042ba.
    1. Camuzcuoglu H, Arioz DT, Toy H, Kurt S, Celik H, Aksoy N. Assessment of preoperative serum prolidase activity in epithelial ovarian cancer. Eur J Obstet Gynecol Reprod Biol. 2009;147:97–100. doi: 10.1016/j.ejogrb.2009.07.012.
    1. Gonçalves FM, Jacob-Ferreira ALB, Gomes VA, Casella-Filho A, Chagas AC, Marcaccini AM, Gerlach RF, Tanus-Santos JE. Increased circulating levels of matrix metalloproteinase (MMP)-8, MMP-9, and pro-inflammatory markers in patients with metabolic syndrome. Clin Chim Acta. 2009;403:173–177. doi: 10.1016/j.cca.2009.02.013.
    1. Aquilante CL, Beitelshees AL, Zineh I. Correlates of serum matrix metalloproteinase-8 (MMP-8) concentrations in nondiabetic subjects without cardiovascular disease. Clin Chim Acta. 2007;379:48–52. doi: 10.1016/j.cca.2006.12.006.
    1. Miksztowicz V, Muzzio ML, Royer M, Prada M, Wikinski R, Schreier L, Berg G. Increased plasma activity of metalloproteinase 2 in women with metabolic syndrome. Metabolism. 2008;57:1493–1496. doi: 10.1016/j.metabol.2008.06.001.
    1. Scroyen I, Cosemans L, Lijnen HR. Effect of tissue inhibitor of matrix metalloproteinases-1 on in vitro and in vivo adipocyte differentiation. Thromb Res. 2009;124:578–583. doi: 10.1016/j.thromres.2009.06.020.
    1. Gummesson A, Hagg D, Olson FJ, Hulthe J, Carlsson LM, Fagerberg B. Adipose tissue is not an important source for matrix metalloproteinase-9 in the circulation. Scand J Clin Lab Invest. 2009;69:636–642. doi: 10.3109/00365510902912747.
    1. Demeulemeester D, Collen D, Lijnen HR. Effect of matrix metalloproteinase inhibition on adipose tissue development. Biochem Biophys Res Commun. 2005;329:105–110. doi: 10.1016/j.bbrc.2005.01.103.
    1. Belo VA, Souza-Costa DC, Lana CM, Caputo FL, Marcaccini AM, Gerlach RF, Bastos MG, Tanus-Santos JE. Assessment of matrix metalloproteinase (MMP)-2, MMP-8, MMP-9, and their inhibitors, the tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in obese children and adolescents. Clin Biochem. 2009;42:984–990. doi: 10.1016/j.clinbiochem.2009.03.025.
    1. Głowińska-Olszewska B, Urban M. Elevated matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 in obese children and adolescents. Metabolism. 2007;56:799–805. doi: 10.1016/j.metabol.2007.01.011.
    1. Papazafiropoulou A, Perrea D, Moyssakis I, Kokkinos A, Katsilambros N, Tentolouris N. Plasma levels of MMP-2, MMP-9 and TIMP-1 are not associated with arterial stiffness in subjects with type 2 diabetes mellitus. J Diabetes Complications. 2010;24:20–27. doi: 10.1016/j.jdiacomp.2008.10.004.
    1. Death AK, Fisher EJ, McGrath KC, Yue DK. High glucose alters matrix metalloproteinase expression in two key vascular cells: potential impact on atherosclerosis in diabetes. Atherosclerosis. 2003;168:263–269. doi: 10.1016/S0021-9150(03)00140-0.
    1. Ho FM, Liu SH, Lin WW, Liau CSJ. Opposite effects of high glucose on MMP-2 and TIMP-2 in human endothelial cells. Cell Biochem. 2007;101:442–450. doi: 10.1002/jcb.21192.
    1. Derosa G, D'Angelo A, Scalise F, Avanzini MA, Tinelli C, Peros E, Fogari E, Cicero AF. Comparison between metalloproteinases-2 and −9 in healthy subjects, diabetics, and subjects with acute coronary syndrome. Heart Vessels. 2007;22:361–370. doi: 10.1007/s00380-007-0989-6.
    1. Derosa G, D'Angelo A, Ciccarelli L, Piccinni MN, Pricolo F, Salvadeo S, Montagna L, Gravina A, Ferrari I, Galli S, Paniga S, Tinelli C, Cicero AF. Matrix metalloproteinase-2, −9, and tissue inhibitor of metalloproteinase-1 in patients with hypertension. Endothelium. 2006;13:227–231. doi: 10.1080/10623320600780942.
    1. Fontana V, Silva PS, Belo VA, Antonio RC, Ceron CS, Biagi C, Gerlach RF, Tanus-Santos JE. Consistent alterations of circulating matrix metalloproteinases levels in untreated hypertensives and in spontaneously hypertensive rats: a relevant pharmacological target. Basic Clin Pharmacol Toxicol. 2011;109:130–137. doi: 10.1111/j.1742-7843.2011.00698.x.
    1. Franz M, Berndt A, Altendorf-Hofmann A, Fiedler N, Richter P, Schumm J, Fritzenwanger M, Figulla HR, Brehm BR. Serum levels of large tenascin-C variants, matrix metalloproteinase-9, and tissueinhibitors of matrix metalloproteinases in concentric versus eccentric left ventricular hypertrophy. Eur J Heart Fail. 2009;11:1057–1162. doi: 10.1093/eurjhf/hfp128.
    1. Derosa G, Maffioli P, D'Angelo A, Salvadeo SA, Ferrari I, Fogari E, Gravina A, Mereu R, Palumbo I, Randazzo S, Cicero AF. Evaluation of metalloproteinase 2 and 9 levels and their inhibitors in combined dyslipidemia. Clin Invest Med. 2009;32:124–132.
    1. Beaudeux JL, Giral P, Bruckert E, Bernard M, Foglietti MJ, Chapman MJ. Serum matrix metalloproteinase-3 and tissue inhibitor of metalloproteinases-1 as potential markers of carotid atherosclerosis in infraclinical hyperlipidemia. Atherosclerosis. 2003;169:139–146. doi: 10.1016/S0021-9150(03)00149-7.
    1. Tabur S, Torun AN, Sabuncu T, Turan MN, Celik H, Ocak AR. Non-diabetic metabolic syndrome and obesity do not affect serum paraoxonase and arylesterase activities but do affect oxidative stress and inflammation oxidative stress and inflammation. Eur J Endocrinol. 2010;162:535–554. doi: 10.1530/EJE-09-0732.

Source: PubMed

3
Suscribir