Optimal Cut-Off Values of Visceral Fat Area for Predicting Metabolic Syndrome Among Type 2 Diabetes Patients in Ningbo, China

Xi Yang, Yi Lin, Guo-Dong Xu, Yan-Shu Chen, Ye Zhou, Jing Sun, Li Li, Xi Yang, Yi Lin, Guo-Dong Xu, Yan-Shu Chen, Ye Zhou, Jing Sun, Li Li

Abstract

Objective: To examine the optimal cut-off values of visceral fat area (VFA) for predicting metabolic syndrome (MetS) among type 2 diabetes (T2D) patients in Ningbo China.

Methods: A total of 1017 subjects were selected from T2D patients who accepted standardized management by the National Standardized Metabolic Disease Management Center at Ningbo First Hospital from March 2018 to January 2020. Demography and medical information were collected through questionnaires. Regional adiposity was examined by a visceral fat analyzer using the dual bioelectrical impedance method.

Results: Overall, 769 (75.6%) T2D patients were defined to have MetS. Patients with MetS had higher anthropometric values and biomarkers, compared to those without MetS. VFA was significantly correlated with risk factors of MetS. Further logistic regression models showed that VFA was significantly associated with MetS in men (OR=1.02) and in women (OR=1.03) (P<0.001 for both genders) after controlling for related factors. Receiver-operating characteristic curve analysis demonstrated that the optimal cut-off values of VFA were 84.7 cm2 for men and 81.1 cm2 for women to predict MetS in T2D patients.

Conclusion: VFA was associated with MetS and could be an independent predictor of MetS in T2D patients.

Clinical trial registration: www.ClinicalTrials.gov, number: NCT03811470.

Keywords: abdominal obesity; metabolic syndrome; type 2 diabetes; visceral fat area.

Conflict of interest statement

The authors declared no conflicts of interest for this work.

© 2021 Yang et al.

Figures

Figure 1
Figure 1
ROC curves for cut-off value of VFA to predict MetS. In men: area under the curve=0.752, 95% CI 0.706–0.799, P2 were 74.7% and 65.8%, respectively. In women: area under the curve=0.785, 95% CI 0.735–0.836, P<0.001. Sensitivity and specificity at a VFA of 81.1 cm2 were 59.2% and 88.0%, respectively.

References

    1. Wilson PW, D’Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005;112(20):3066–3072. doi:10.1161/CIRCULATIONAHA.105.539528
    1. Meigs JB, Rutter MK, Sullivan LM, et al. Impact of insulin resistance on risk of type 2 diabetes and cardiovascular disease in people with metabolic syndrome. Diabetes Care. 2007;30(5):1219–1225. doi:10.2337/dc06-2484
    1. Executive Summary of the Third Report of The National Cholesterol Education Program (NCEP). Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–2497. doi:10.1001/jama.285.19.2486
    1. Grundy SM, Brewer HB Jr, Cleeman JI, et al. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3):433–438. doi:10.1161/01.CIR.0000111245.75752.C6
    1. Xi B, He D, Hu Y, Zhou D. Prevalence of metabolic syndrome and its influencing factors among the Chinese adults: the China health and nutrition survey in 2009. Prev Med. 2013;57(6):867–871. doi:10.1016/j.ypmed.2013.09.023
    1. Lan Y, Mai Z, Zhou S, et al. Prevalence of metabolic syndrome in China: an up-dated cross-sectional study. PLoS One. 2018;13(4):e0196012. doi:10.1371/journal.pone.0196012
    1. Metabolic Syndrome Research Cooperative Group, Diabetes Branch of Chinese Medical Association. Suggestions on metabolic syndrome from Chinese society of diabetes mellitus. Chin J Diabetes. 2004;12(3):156–161.
    1. Carr DB, Utzschneider KM, Hull RL, et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes. 2004;53(8):2087–2094. doi:10.2337/diabetes.53.8.2087
    1. Fujimoto WY, Bergstrom RW, Boyko EJ, et al. Visceral adiposity and incident coronary heart disease in Japanese-American men. The 10-year follow-up results of the Seattle Japanese-American Community Diabetes Study. Diabetes Care. 1999;22(11):1808–1812. doi:10.2337/diacare.22.11.1808
    1. Alberti KG, Zimmet P, Shaw J. metabolic syndrome–a new world-wide definition. a consensus statement from the international diabetes federation. Diabetes Med. 2006;23(5):469–480. doi:10.1111/j.1464-5491.2006.01858.x
    1. Nakamura T, Tokunaga K, Shimomura I, et al. Contribution of visceral fat accumulation to the development of coronary artery disease in non-obese men. Atherosclerosis. 1994;107(2):239–246. doi:10.1016/0021-9150(94)90025-6
    1. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116(1):39–48. doi:10.1161/CIRCULATIONAHA.106.675355
    1. Wang Y, Ma X, Zhou M, et al. Contribution of visceral fat accumulation to carotid intima-media thickness in a Chinese population. Int J Obes (Lond). 2012;36(9):1203–1208. doi:10.1038/ijo.2011.222
    1. Oka R, Kobayashi J, Yagi K, et al. Reassessment of the cutoff values of waist circumference and visceral fat area for identifying Japanese subjects at risk for the metabolic syndrome. Diabetes Res Clin Pract. 2008;79(3):474–481. doi:10.1016/j.diabres.2007.10.016
    1. Examination Committee of Criteria for ‘Obesity Disease’ in Japan; Japan Society for the Study of Obesity. New criteria for ‘obesity disease’ in Japan. Circ J. 2002;66(11):987–992. doi:10.1253/circj.66.987
    1. Bao Y, Lu J, Wang C, et al. Optimal waist circumference cutoffs for abdominal obesity in Chinese. Atherosclerosis. 2008;201(2):378–384. doi:10.1016/j.atherosclerosis.2008.03.001
    1. Kim JA, Choi CJ, Yum KS. Cut-off values of visceral fat area and waist circumference: diagnostic criteria for abdominal obesity in a Korean population. J Korean Med Sci. 2006;21(6):1048–1053. doi:10.3346/jkms.2006.21.6.1048
    1. Yoshizumi T, Nakamura T, Yamane M, et al. Abdominal fat: standardized technique for measurement at CT. Radiology. 1999;211(1):283–286. doi:10.1148/radiology.211.1.r99ap15283
    1. Enomoto M, Adachi H, Fukami A, et al. A useful tool as a medical checkup in a general population-bioelectrical impedance analysis. Front Cardiovasc Med. 2017;4:3. doi:10.3389/fcvm.2017.00003
    1. Park KS, Lee DH, Lee J, et al. Comparison between two methods of bioelectrical impedance analyses for accuracy in measuring abdominal visceral fat area. J Diabetes Complications. 2016;30(2):343–349. doi:10.1016/j.jdiacomp.2015.10.014
    1. Ryo M, Maeda K, Onda T, et al. A new simple method for the measurement of visceral fat accumulation by bioelectrical impedance. Diabetes Care. 2005;28(2):451–453. doi:10.2337/diacare.28.2.451
    1. Björntorp P. “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis. 1990;10(4):493–496.
    1. Lee JJ, Pedley A, Hoffmann U, Massaro JM, Fox CS. Association of changes in abdominal fat quantity and quality with incident cardiovascular disease risk factors. J Am Coll Cardiol. 2016;68(14):1509–1521. doi:10.1016/j.jacc.2016.06.067
    1. Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24(4):683–689. doi:10.2337/diacare.24.4.683
    1. Martínez-Larrad MT, Corbatón-Anchuelo A, Fernández-Pérez C, Lazcano-Redondo Y, Escobar-Jiménez F, Serrano-Ríos M. Metabolic syndrome, glucose tolerance categories and the cardiovascular risk in Spanish population. Diabetes Res Clin Pract. 2016;114:23–31. doi:10.1016/j.diabres.2016.02.003
    1. Malik S, Wong ND, Franklin SS, et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 2004;110(10):1245–1250. doi:10.1161/01.CIR.0000140677.20606.0E
    1. Wang J, Ruotsalainen S, Moilanen L, Lepistö P, Laakso M, Kuusisto J. The metabolic syndrome predicts cardiovascular mortality: a 13-year follow-up study in elderly non-diabetic Finns. Eur Heart J. 2007;28(7):857–864. doi:10.1093/eurheartj/ehl524
    1. Lin Y, Ying YY, Li SX, Wang SJ, Gong QH, Li H. Association between alcohol consumption and metabolic syndrome among Chinese adults. Public Health Nutr. 2020;1–23. doi:10.1017/S1368980020004449
    1. Zhang Y, Wang W, Ning G. Metabolic management center: an innovation project for the management of metabolic diseases and complications in China. J Diabetes. 2019;11(1):11–13. doi:10.1111/1753-0407.12847
    1. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetes Med. 1998;15(7):539–553. doi:10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>;2-S
    1. Chinese Diabetes Society. Guidelines for prevention and treatment of type 2 diabetes in Chinese (2017 edition). Chin J Diabetes Mellit. 2018;10(1):4–67.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419. doi:10.1007/BF00280883
    1. Ma YC, Zuo L, Chen JH, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol. 2006;17(10):2937–2944. doi:10.1681/ASN.2006040368
    1. Ultrasound Branch of Chinese Medical Doctor Association. Guidelines for ultrasound vascular examination. Chin J Ultrasound Imaging. 2009;18(10):911–920.
    1. Jendle J, Nauck MA, Matthews DR, et al. Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes Metab. 2009;11(12):1163–1172. doi:10.1111/j.1463-1326.2009.01158.x
    1. Kodama N, Tahara N, Tahara A, et al. Effects of pioglitazone on visceral fat metabolic activity in impaired glucose tolerance or type 2 diabetes mellitus. J Clin Endocrinol Metab. 2013;98(11):4438–4445. doi:10.1210/jc.2013-2920
    1. Mori Y, Mamori S, Tajima N. Weight loss-associated changes in acute effects of nateglinide on insulin secretion after glucose loading: results of glucose loading on 2 consecutive days. Diabetes Obes Metab. 2005;7(2):182–188. doi:10.1111/j.1463-1326.2004.00384.x
    1. Bolinder J, Ljunggren Ö, Kullberg J, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97(3):1020–1031. doi:10.1210/jc.2011-2260
    1. Perkins NJ, Schisterman EF. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol. 2006;163(7):670–675. doi:10.1093/aje/kwj063
    1. Li X, Cao C, Tang X, et al. Prevalence of metabolic syndrome and its determinants in newly-diagnosed adult-onset diabetes in china: a multi-center, cross-sectional survey. Front Endocrinol (Lausanne). 2019;10:661. doi:10.3389/fendo.2019.00661
    1. Birarra MK, Gelayee DA. Metabolic syndrome among type 2 diabetic patients in Ethiopia: a cross-sectional study. BMC Cardiovasc Disord. 2018;18(1):149. doi:10.1186/s12872-018-0880-7
    1. Kim WY, Kim JE, Choi YJ, Huh KB. Nutritional risk and metabolic syndrome in Korean type 2 diabetes mellitus. Asia Pac J Clin Nutr. 2008;17(Suppl 1):47–51.
    1. Unwin N, Harland J, White M, et al. Body mass index, waist circumference, waist-hip ratio, and glucose intolerance in Chinese and Europid adults in Newcastle, UK. J Epidemiol Community Health. 1997;51(2):160–166. doi:10.1136/jech.51.2.160
    1. Deurenberg-Yap M, Chew SK, Deurenberg P. Elevated body fat percentage and cardiovascular risks at low body mass index levels among Singaporean Chinese, Malays and Indians. Obes Rev. 2002;3(3):209–215. doi:10.1046/j.1467-789X.2002.00069.x
    1. Jia WP, Lu JX, Xiang KS, Bao YQ, Lu HJ, Chen L. Prediction of abdominal visceral obesity from body mass index, waist circumference and waist-hip ratio in Chinese adults: receiver operating characteristic curves analysis. Biomed Environ Sci. 2003;16(3):206–211.
    1. Ye Y, Bao Y, Hou X, et al. Identification of waist circumference cutoffs for abdominal obesity in the Chinese population: a 7.8-year follow-up study in the Shanghai urban area. Int J Obes (Lond). 2009;33(9):1058–1062. doi:10.1038/ijo.2009.134
    1. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316(2):129–139. doi:10.1016/j.mce.2009.08.018
    1. Pou KM, Massaro JM, Hoffmann U, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007;116(11):1234–1241. doi:10.1161/CIRCULATIONAHA.107.710509
    1. Funahashi T, Matsuzawa Y. Metabolic syndrome: clinical concept and molecular basis. Ann Med. 2007;39(7):482–494. doi:10.1080/07853890701491026
    1. Frayn KN. Visceral fat and insulin resistance–causative or correlative? Br J Nutr. 2000;83(Suppl 1):S71–S77. doi:10.1017/S0007114500000982
    1. Hayashi T, Boyko EJ, McNeely MJ, Leonetti DL, Kahn SE, Fujimoto WY. Minimum waist and visceral fat values for identifying Japanese Americans at risk for the metabolic syndrome. Diabetes Care. 2007;30(1):120–127. doi:10.2337/dc06-0739
    1. Lee A, Kim YJ, Oh SW, et al. Cut-off values for visceral fat area identifying korean adults at risk for metabolic syndrome. Korean J Fam Med. 2018;39(4):239–246. doi:10.4082/kjfm.17.0099
    1. Toth MJ, Tchernof A, Sites CK, Poehlman ET. Menopause-related changes in body fat distribution. Ann N Y Acad Sci. 2000;904:502–506. doi:10.1111/j.1749-6632.2000.tb06506.x

Source: PubMed

3
Suscribir