Inflammation and hypertension development: A longitudinal analysis of the African-PREDICT study

Simone H Crouch, Shani Botha-Le Roux, Christian Delles, Lesley A Graham, Aletta E Schutte, Simone H Crouch, Shani Botha-Le Roux, Christian Delles, Lesley A Graham, Aletta E Schutte

Abstract

Background: The role of inflammation in the development of hypertension remains incompletely understood. While single inflammatory mediators have been shown to associate with changes in blood pressure (ΔBP), the role of clusters of inflammatory mediators has been less comprehensively explored. We therefore determined whether individual or clusters of inflammatory mediators from a large biomarker panel were associated with ΔBP over 4.5 years, in young healthy adults.

Methods: We included 358 adults (white, n = 156; black, n = 202) with detailed information on ambulatory blood pressure (BP) at baseline and follow-up. Baseline blood samples were analysed for 22 inflammatory mediators using multiplexing technology. Principal component analysis was used to study associations between clusters of inflammatory mediators and ΔBP.

Results: In the total cohort in multivariable-adjusted regression analyses, percentage change in 24hr systolic BP associated positively with Factors 1 (Interferon-gamma, interleukin (IL)-4, IL-7, IL-10, IL-12, IL-17A, IL-21, IL-23, macrophage inflammatory protein (MIP)-1α, MIP-1β, TNF-α, granulocyte-macrophage colony-stimulating factor (GM-CSF)) and 2 (IL-5, IL-6, IL-8, IL-13). Change in daytime systolic BP associated positively with Factors 1, 2 and 3 (C-Reactive protein, IL-1β, IL-2, MIP-3α). Subgroup analysis found these findings were limited to white study participants. Numerous associations were present between individual inflammatory mediators (Interferon-gamma, GM-CSF, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17A, IL-21, IL-23, MIP-1α and MIP-1β) and ΔBP in the white but not black subgroups.

Conclusion: We found independent relationships between numerous inflammatory mediators (individual and clusters) and ΔBP over 4.5 years. The relationship between inflammatory markers and ΔBP was only found in white participants. ClinicalTrials.gov (Identifier: NCT03292094)..

Keywords: African; Black; Cytokine; Ethnicity; Hypertension.

© 2020 The Author(s).

Figures

Fig. 1
Fig. 1
Layout of the study population.
Fig. 2
Fig. 2
Percentage change in ambulatory blood pressure over 4.5 years in young black and white adults. Horizontal line and whiskers: Mean ± SD. Abbreviations: SBP Systolic blood pressure; DBP Diastolic blood pressure.

References

    1. Barrows I.R., Ramezani A., Raj D.S. Inflammation, immunity, and oxidative stress in hypertension—partners in crime? Adv. Chron. Kidney Dis. 2019;26(2):122–130. doi: 10.1053/j.ackd.2019.03.001.
    1. Stanaway J.D., Afshin A., Gakidou E. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923–1994. doi: 10.1016/S0140-6736(18)32225-6.
    1. Li J.-J., Fang C.-H., Hui R.-T. Is hypertension an inflammatory disease? Med. Hypotheses. 2005;64(2):236–240. doi: 10.1016/j.mehy.2004.06.017.
    1. I Idris-Khodja N., Mian M.O.R., Paradis P., Schiffrin E.L. Dual opposing roles of adaptive immunity in hypertension. Eur. Heart J. 2014;35(19):1238–1244. doi: 10.1093/eurheartj/ehu119.
    1. Mian M.O.R., Paradis P., Schiffrin E.L. Innate immunity in hypertension. Curr. Hypertens. Rep. 2014;16(2):413. doi: 10.1007/s11906-013-0413-9.
    1. Harrison D.G., Guzik T.J., Lob H.E. Inflammation, immunity, and hypertension. Hypertension. 2011;57(2):132–140. doi: 10.1161/HYPERTENSIONAHA.110.163576.
    1. Schiffrin E.L. Immune mechanisms in hypertension and vascular injury. Clin. Sci. 2014;126(4):267–274. doi: 10.1042/CS20130407.
    1. Harrison D.G., Gongora M.C. Oxidative stress and hypertension. Med. Clin. 2009;93(3):621–635. doi: 10.1016/j.mcna.2009.02.015.
    1. Stumpf C., John S., Jukic J. Enhanced levels of platelet P-selectin and circulating cytokines in young patients with mild arterial hypertension. J. Hypertens. 2005;23(5):995–1000. doi: 10.1097/01.hjh.0000166840.63312.12.
    1. Sesso H.D., Buring J.E., Rifai N., Blake G.J., Gaziano J.M., Ridker P.M. C-reactive protein and the risk of developing hypertension. J. Am. Med. Assoc. 2003;290(22):2945–2951.
    1. Olsen M.H., Angell S.Y., Asma S. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet. 2016;388(10060):2665–2712. doi: 10.1016/S0140-6736(16)31134-5.
    1. Pauletto P., Rattazzi M. Inflammation and hypertension: the search for a link. Nephrol. Dial. Transplant. 2006;21(4):850–853. doi: 10.1093/ndt/gfl019.
    1. Tziakas D.N., Chalikias G.K., Kaski J.C. Inflammatory and anti-inflammatory variable clusters and risk prediction in acute coronary syndrome patients: a factor analysis approach. Atherosclerosis. 2007;193(1):196–203. doi: 10.1016/j.atherosclerosis.2006.06.016.
    1. Crouch S.H., Botha-Le Roux S., Delles C., Graham L.A., Schutte A.E. Distinct inflammatory mediator patterns in young black and white adults: the African-predict study. Cytokine. 2020;126:154894. doi: 10.1016/j.cyto.2019.154894.
    1. Miller M., Cappuccio F. Ethnicity and inflammatory pathways-implications for vascular disease, vascular risk and therapeutic intervention. Curr. Med. Chem. 2007;14(13):1409–1425. doi: 10.2174/092986707780831131.
    1. Minor D.S., Wofford M.R., Jones D.W. Racial and ethnic differences in hypertension. Curr. Atherosclerosis Rep. 2008;10(2):121–127. doi: 10.1007/s11883-008-0018-y.
    1. Schutte A.E., Gona P.N., Delles C. The african prospective study on the early detection and identification of cardiovascular disease and hypertension (African-PREDICT): design, recruitment and initial examination. Eur J Prev Cardiol. 2019;26(5):458–470. doi: 10.1177/2047487318822354.
    1. Patro B.K., Jeyashree K., Gupta P.K. Kuppuswamy's socioeconomic status scale 2010—the need for periodic revision. Indian J. Pediatr. 2012;79(3):395–396. doi: 10.1007/s12098-011-0517-7.
    1. Williams B., Mancia G., Spiering W. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018;39(33):3021–3104. doi: 10.1093/eurheartj/ehy339.
    1. van Deventer H.E., George J.A., Paiker J.E., Becker P.J., Katz I.J. Estimating glomerular filtration rate in black South Africans by use of the modification of diet in renal disease and Cockcroft-Gault equations. Clin. Chem. 2008;54(7):1197–1202. doi: 10.1373/clinchem.2007.099085.
    1. Kilic T., Ural D., Ural E. Relation between proinflammatory to anti-inflammatory cytokine ratios and long-term prognosis in patients with non-ST elevation acute coronary syndrome. Heart. 2006;92(8):1041–1046. doi: 10.1136/hrt.2005.080382.
    1. Gogos C.A., Drosou E., Bassaris H.P., Skoutelis A. Pro-versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J. Infect. Dis. 2000;181(1):176–180. doi: 10.1086/315214.
    1. Faul F., Erdfelder E., Lang A.-G., Buchner A.G. ∗ Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39(2):175–191. doi: 10.3758/BF03193146.
    1. Simons K.H., de Jong A., Jukema J.W., de Vries M.R., Arens R., Quax P.H.A. T cell co-stimulation and co-inhibition in cardiovascular disease: a double-edged sword. Nat. Rev. Cardiol. 2019;16:325–343. doi: 10.1038/s41569-019-0164-7.
    1. Caillon A., Schiffrin E.L. Role of inflammation and immunity in hypertension: recent epidemiological, laboratory, and clinical evidence. Curr. Hypertens. Rep. 2016;18(3):21. doi: 10.1007/s11906-016-0628-7.
    1. Lande M.B., Pearson T.A., Vermilion R.P., Auinger P., Fernandez I.D. Elevated blood pressure, race/ethnicity, and C-reactive protein levels in children and adolescents. Pediatrics. 2008;122(6):1252–1257. doi: 10.1542/peds.2007-3162.
    1. Garanty-Bogacka B., Syrenicz M., Syrenicz A., Gebala A., Lulka D., Walczak M. Serum markers of inflammation and endothelial activation in children with obesity-related hypertension. Neuroendocrinol. Lett. 2005;26(3):242–246.
    1. Syrenicz A., Garanty-Bogacka B., Syrenicz M., Gebala A., Dawid G., Walczak M. Relation of low-grade inflammation and endothelial activation to blood pressure in obese children and adolescents. Neuroendocrinol. Lett. 2006;27(4):459–464.
    1. Devallière J., Charreau B. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem. Pharmacol. 2011;82(10):1391–1402. doi: 10.1016/j.bcp.2011.06.023.
    1. Ye J., Que B., Huang Y. Interleukin-12p35 knockout promotes macrophage differentiation, aggravates vascular dysfunction, and elevates blood pressure in angiotensin II-infused mice. Cardiovasc. Res. 2019;115(6):1102–1113. doi: 10.1093/cvr/cvy263.
    1. McMaster W.G., Kirabo A., Madhur M.S., Harrison D.G. Inflammation, immunity, and hypertensive end-organ damage. Circ. Res. 2015;116(6):1022–1033. doi: 10.1161/CIRCRESAHA.116.303697.
    1. Stumpf C., Auer C., Yilmaz A. Serum levels of the Th1 chemoattractant interferon-gamma-inducible protein (IP) 10 are elevated in patients with essential hypertension. Hypertens. Res. 2011;34(4):484–488. doi: 10.1038/hr.2010.258.
    1. Fitzgerald K.A., O'Neill L.A., Gearing A.J., Callard R.E. Elsevier; 2001. The Cytokine Factsbook and Webfacts.
    1. Li J.-J., Chen J.-L. Inflammation may be a bridge connecting hypertension and atherosclerosis. Med. Hypotheses. 2005;64(5):925–929. doi: 10.1016/j.mehy.2004.10.016.
    1. Mwantembe O., Gaillard M.-C., Barkhuizen M. Ethnic differences in allelic associations of the interleukin-1 gene cluster in South African patients with inflammatory bowel disease (IBD) and in control individuals. Immunogenetics. 2001;52(3–4):249–254. doi: 10.1007/s002510000265.
    1. Schutte A.E., Myburgh A., Olsen M.H., Eugen-Olsen J., Schutte R. Exploring soluble urokinase plasminogen activator receptor and its relationship with arterial stiffness in a bi-ethnic population: the SAfrEIC-study. Thromb. Res. 2012;130(2):273–277. doi: 10.1016/j.thromres.2011.10.034.
    1. Selassie A., Wagner C.S., Laken M.L., Ferguson M.L., Ferdinand K.C., Egan B.M. Progression is accelerated from prehypertension to hypertension in blacks. Hypertension. 2011;58(4):579–587. doi: 10.1161/HYPERTENSIONAHA.111.177410.
    1. Tanaka M. Improving obesity and blood pressure. Hypertens. Res. 2020;43(2):79–89. doi: 10.1038/s41440-019-0348-x.
    1. Yang M.H., Kang S.Y., Lee J.A., Kim Y.S., Sung E.J., Lee K.-Y., Kim J.-S., Oh H.J., Kang H.C., Lee S.Y. The effect of lifestyle changes on blood pressure control among hypertensive patients. Korean J Fam Med. 2017;38(4):173. doi: 10.4082/kjfm.2017.38.4.173.
    1. Bochud M., Staessen J.A., Maillard M. Ethnic differences in proximal and distal tubular sodium reabsorption are heritable in black and white populations. J. Hypertens. 2009;27(3):606. doi: 10.1097/HJH.0b013e32832104b1.
    1. Schutte A.E., Kruger R., Gafane-Matemane L.F., Breet Y., Strauss-Kruger M., Cruickshank J.K. Ethnicity and arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 2020;40(5):1044–1054. doi: 10.1161/ATVBAHA.120.313133.
    1. Schutte A., Huisman H., Van Rooyen J. Should obesity be blamed for the high prevalence rates of hypertension in black South African women? J. Hum. Hypertens. 2008;22(8):528–536. doi: 10.1038/jhh.2008.35.
    1. Huisman H.W., Schutte A.E., Schutte R. Exploring the link between cardiovascular reactivity and end-organ damage in African and Caucasian men: the SABPA study. Am. J. Hypertens. 2013;26(1):68–75. doi: 10.1093/ajh/hps007.
    1. Drazner M.H., Dries D.L., Peshock R.M. Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas Heart Study. Hypertension. 2005;46(1):124–129. doi: 10.1161/01.HYP.0000169972.96201.8e.
    1. Schutte A., Botha S., Fourie C. Recent advances in understanding hypertension development in sub-Saharan Africa. J. Hum. Hypertens. 2017;31(8):491–500. doi: 10.1038/jhh.2017.18.
    1. Touyz R.M., Delles C. Springer; 2019. Textbook of Vascular Medicine; p. 47.
    1. Terentes-Printzios D., Vlachopoulos C., Xaplanteris P. Cardiovascular risk factors accelerate progression of vascular aging in the general population: results from the CRAVE study (Cardiovascular Risk Factors Affecting Vascular Age) Hypertension. 2017;70(5):1057–1064. doi: 10.1161/HYPERTENSIONAHA.117.09633.
    1. McDade T.W., Hoke M., Borja J.B., Adair L.S., Kuzawa C. Do environments in infancy moderate the association between stress and inflammation in adulthood? Initial evidence from a birth cohort in the Philippines. Brain Behav. Immun. 2013;31:23–30. doi: 10.1016/j.bbi.2012.08.010.
    1. Oparil S., Acelajado M.C., Bakris G.L., Berlowitz D.R., Cífková R., Dominiczak A.F., Grassi G., Jordan J., Poulter N.R., Rodgers A., Whelton P.K. Hypertension. Nat Rev Dis Primers. 2018;4(1):18014. doi: 10.1038/nrdp.2018.14.
    1. Thompson J.E., Smith W., Ware L.J. Masked hypertension and its associated cardiovascular risk in young individuals: the African-PREDICT study. Hypertens. Res. 2016;39(3):158–165. doi: 10.1038/hr.2015.123.

Source: PubMed

3
Suscribir