Effectiveness of a Motivational Nutritional Intervention through Social Networks 2.0 to Increase Adherence to the Mediterranean Diet and Improve Lung Function in Active Smokers: The DIET Study, a Randomized, Controlled and Parallel Clinical Trial in Primary Care

Patricia Salamanca-González, Rosa Maria Valls-Zamora, Anna Pedret-Figuerola, Mar Sorlí-Aguilar, Antoni Santigosa-Ayala, Roxana-Elena Catalin, Meritxell Pallejà-Millán, Rosa Solà-Alberich, Francisco Martin-Lujan, The Cenit Research Group Investigators, Patricia Salamanca-González, Rosa Maria Valls-Zamora, Anna Pedret-Figuerola, Mar Sorlí-Aguilar, Antoni Santigosa-Ayala, Roxana-Elena Catalin, Meritxell Pallejà-Millán, Rosa Solà-Alberich, Francisco Martin-Lujan, The Cenit Research Group Investigators

Abstract

Background: Diet can help preserve lung function in smokers, as well as aid individuals who avoid smoking. This study aimed to evaluate the effectiveness of a nutritional intervention, using the Social Networks 2.0 tool, to increase adherence to the Mediterranean diet (MD) and improve lung function in smokers without prior respiratory disease.

Methods: A randomized controlled parallel design was used. The participants were assigned to either the intervention or control group. Data from representative smokers without respiratory disease (n = 77) aged 18-70 years were analyzed. The participants completed a validated semi-quantitative food-frequency questionnaire, and their adherence to the diet was evaluated by using the questionnaire called the Mediterranean Diet Adherence Score (MEDAS, with 14 items), which considers ≥9 points to indicate high adherence. The lung function was assessed by spirometry. Associations among variables were determined by logistic regression.

Results: A comparison of the variables at the end of the study between the control and intervention groups showed that the intervention significantly increased adherence to the MD based on the MEDAS questionnaire (0.69 (2.1) vs. 2.05 (2.03); p = 0.009). Specifically, the consumption of fruits was increased after two years in both groups; however, a more significant increase was detected in the intervention group (121 (178) vs. 12.7 (167) in the control group; p-value = 0.008). In the unadjusted analysis, the intervention only showed a statistical significant increase in the score of adherence to the MD (β: 1.36; 95% CI 0.35; 2.3; p = 0.009), and this increase was maintained after adjusting for age and sex (β: 1.15; 95% CI 0.05; 2.2; p = 0.040) and after adjusting for various sociodemographic, lifestyle and anthropometric variables (β: 1.17; 95% CI 0.02; 2.31; p = 0.046). The pulmonary function parameters improved more in the intervention group; however, no significant differences were observed between the two groups.

Conclusions: A nutritional intervention based on a dietetic-nutritional education program resulted in a significant increase in adherence to the MD. However, some evidence suggests that an MD dietary intervention can improve lung function, but in our study, we were not able to demonstrate this. Further research is needed to obtain more robust data and confirm a possible benefit of the program before it can be extended to general practice.

Keywords: Mediterranean diet; lung disease; nutritional intervention; primary care centers.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of the project: participant selection, randomization and follow-up.
Figure 2
Figure 2
Participants with positive answer (%) to each of the 14 Items of MEDAS. MEDAS refers to the 14-point test of adherence to the Mediterranean diet validated by the PREDIMED study [34]: (Q1) use olive oil as main culinary fat, (Q2) olive oil > 4 tablespoons, (Q3) vegetables ≥ 2 servings/day, (Q4) fruits ≥ 3 servings/day, (Q5) red or processed meats n). Negative values show the difference in the number of participants responding affirmatively to the questionnaire question at the final visit compared to the baseline visit. The McNemar test was used for analysis (test for paired qualitative variable). a p-value <0.05 when comparing data between baseline and final visit. b p-value <0.01 when comparing data between baseline and final visit.

References

    1. Schulze M.B., Martínez-González M.A., Fung T.T., Lichtenstein A.H., Forouhi N. Food based dietary patterns and chronic disease prevention. BMJ. 2018;361:k2396. doi: 10.1136/bmj.k2396.
    1. Berthon B.S., Wood L.G. Nutrition and Respiratory Health—Feature Review. Nutrients. 2015;7:1618–1643. doi: 10.3390/nu7031618.
    1. Rabe K.F., Watz H. Chronic obstructive pulmonary disease. Lancet. 2017;389:1931–1940. doi: 10.1016/S0140-6736(17)31222-9.
    1. Papassotiriou I., Islam S.M.S. Adherence to Mediterranean Diet Is Associated With Lung Function in Older Adults: Data from the Health and Retirement Study. J. Am. Coll. Nutr. 2021;40:119–124. doi: 10.1080/07315724.2020.1740114.
    1. Bach-Faig A., Geleva D., Carrasco J., Ribas-Barba L., Serra-Majem L. Evaluating associations between Mediterranean diet adherence indexes and biomarkers of diet and disease. Public Health Nutr. 2006;9:1110–1117. doi: 10.1017/S1368980007668499.
    1. Ochs-Balcom H.M., Grant B.J.B., Muti P., Sempos C.T., Freudenheim J.L., Browne R.W., McCann S.E., Trevisan M., Cassano P.A., Iacoviello L., et al. Antioxidants, oxidative stress, and pulmonary func-tion in individuals diagnosed with asthma or COPD. Eur. J. Clin. Nutr. 2006;60:991–999. doi: 10.1038/sj.ejcn.1602410.
    1. Hanson C., Lyden E., Furtado J., Campos H., Sparrow D., Vokonas P., Litonjua A.A. Serum tocopherol levels and vitamin E intake are associated with lung function in the normative aging study. Clin. Nutr. 2016;35:169–174. doi: 10.1016/j.clnu.2015.01.020.
    1. Sharma G., Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin. Interv. Aging. 2006;1:253–260. doi: 10.2147/ciia.2006.1.3.253.
    1. Kaluza J., Larsson S., Orsini N., Linden A., Wolk A. Fruit and vegetable consumption and risk of COPD: A prospective cohort study of men. Thorax. 2017;72:500–509. doi: 10.1136/thoraxjnl-2015-207851.
    1. Whyand T., Hurst J.R., Beckles M., Caplin M.E. Pollution and respiratory disease: Can diet or supplements help? A review. Respir. Res. 2018;19:79. doi: 10.1186/s12931-018-0785-0.
    1. Zhai T., Li S., Hu W., Li D., Leng S. Potential Micronutrients and Phytochemicals against the Pathogenesis of Chronic Obstructive Pulmonary Disease and Lung Cancer. Nutrients. 2018;10:813. doi: 10.3390/nu10070813.
    1. Dreher M.L. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients. 2018;10:1833. doi: 10.3390/nu10121833.
    1. Pounis G., Arcari A., Costanzo S., Di Castelnuovo A., Bonaccio M., Persichillo M., Donati M.B., de Gaetano G., Iacoviello L. Favorable association of polyphenol-rich diets with lung function: Cross-sectional findings from the Moli-sani study. Respir. Med. 2018;136:48–57. doi: 10.1016/j.rmed.2017.12.007.
    1. Atlantis E., Cochrane B. The association of dietary intake and supplementation of specific polyunsaturated fatty acids with inflammation and functional capacity in chronic obstructive pulmonary disease: A systematic review. Int. J. Evid. Based Healthc. 2016;14:53–63. doi: 10.1097/XEB.0000000000000056.
    1. Fulton A.S., Hill A.M., Williams M.T., Howe P.R., Coates A.M. Paucity of evidence for a relationship between long-chain omega-3 fatty acid intake and chronic obstructive pulmonary disease: A systematic review. Nutr. Rev. 2015;73:612–623. doi: 10.1093/nutrit/nuv017.
    1. Cornell K., Alam M., Lyden E., Wood L., LeVan T.D., Nordgren T.M., Bailey K., Hanson C. Saturated Fat Intake Is Associated with Lung Function in Individuals with Airflow Obstruction: Results from NHANES 2007–2012. Nutrients. 2019;11:317. doi: 10.3390/nu11020317.
    1. Johnson I. The cancer risk related to meat and meat products. Br. Med Bull. 2017;121:73–81. doi: 10.1093/bmb/ldw051.
    1. Kaluza J., Larsson S., Linden A., Wolk A. Consumption of Unprocessed and Processed Red Meat and the Risk of Chronic Obstructive Pulmonary Disease: A Prospective Cohort Study of Men. Am. J. Epidemiol. 2016;184:829–836. doi: 10.1093/aje/kww101.
    1. Kaluza J., Harris H., Linden A., Wolk A. Long-term unprocessed and processed red meat consumption and risk of chronic obstructive pulmonary disease: A prospective cohort study of women. Eur. J. Nutr. 2019;58:665–672. doi: 10.1007/s00394-018-1658-5.
    1. Salari-Moghaddam A., Milajerdi A., Larijani B., Esmaillzadeh A. Processed red meat intake and risk of COPD: A systematic review and dose-response meta-analysis of prospective cohort studies. Clin. Nutr. 2019;38:1109–1116. doi: 10.1016/j.clnu.2018.05.020.
    1. Arvers P. Alcool et poumon: Des liaisons dangereuses [Alcohol consumption and lung damage: Dangerous relationships] Rev. Mal. Respir. 2018;35:1039–1049. doi: 10.1016/j.rmr.2018.02.009.
    1. Yeligar S.M., Chen M.M., Kovacs E.J., Sisson J.H., Burnham E.L., Brown L.A.S. Alcohol and lung injury and immunity. Alcohol. 2016;55:51–59. doi: 10.1016/j.alcohol.2016.08.005.
    1. Mehta A.J., Guidot D.M. Alcohol and the Lung. Alcohol Res. 2017;38:243–254.
    1. Traphagen N., Tian Z., Allengipson D.S. Chronic Ethanol Exposure: Pathogenesis of Pulmonary Disease and Dysfunction. Biomolecules. 2015;5:2840–2853. doi: 10.3390/biom5042840.
    1. Sorli-Aguilar M., Martin-Lujan F., Flores-Mateo G., Arija-Val V., Basora-Gallisa J., Sola-Alberich R., RESET Study Group Investigators Dietary patterns are associated with lung function among Spanish smokers without respiratory disease. BMC Pulm. Med. 2016;16:162. doi: 10.1186/s12890-016-0326-x.
    1. Sorli-Aguilar M., Martin-Lujan F., Santigosa-Ayala A., Piñol-Moreso J.L., Flores-Mateo G., Basora-Gallisá J., Arija-Val V., Solà-Alberich R. Effects of Mediterranean diet on lung function in smokers: A randomised, parallel and controlled protocol. BMC Public Health. 2015;15:74. doi: 10.1186/s12889-015-1450-x.
    1. Chen Y., Perez-Cueto F., Giboreau A., Mavridis I., Hartwell H. The Promotion of Eating Behaviour Change through Digital Interventions. Int. J. Environ. Res. Public Health. 2020;17:7488. doi: 10.3390/ijerph17207488.
    1. Miller M.R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., Crapo R., Enright P., Van Der Grinten C.P.M., Gustafsson P., et al. Standardisation of spirometry. Eur. Respir. J. 2005;26:319–338. doi: 10.1183/09031936.05.00034805.
    1. Schröder H., Fitó M., Estruch R., Martínez-González M.A., Corella D., Salas-Salvadó J., Lamuela-Raventós R., Ros E., Salaverría I., Fiol M., et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011;141:1140–1145. doi: 10.3945/jn.110.135566.
    1. Trinidad I., Fernandez J., Cucó G., Biarnés E., Arija V. Validation of a short questionnaire on frequency of dietary intake: Re-producibility and validity. Nutr Hosp. 2008;23:242–252.
    1. Elosua R., Marrugat J., Molina L., Pons S., Pujol E. Validation of the Minnesota leisure time physical activity questionnaire in spanish men. The MARATHOM investigators. Am. J. Epidemiol. 1994;139:1197–1209. doi: 10.1093/oxfordjournals.aje.a116966.
    1. Román Viñas B., Ribas Barba L., Ngo J., Serra Majem L. Validity of the international physical activity questionnaire in the Catalan population (Spain) Gac. Sanit. 2013;27:254–257. doi: 10.1016/j.gaceta.2012.05.013.
    1. Bach-Faig A., Berry E.M., Lairon D., Reguant J., Trichopoulou A., Dernini S., Medina F.X., Battino M., Belahsen R., Miranda G., et al. Mediterranean Diet Foundation Expert Group. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011;14:2274–2284. doi: 10.1017/S1368980011002515.
    1. Estruch R., Ros E., Salas-Salvadó J., Covas M.-I., Corella D., Arós F., Gómez-Gracia E., Ruiz-Gutiérrez V., Fiol M., Lapetra J., et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N. Engl. J. Med. 2013;368:1279–1290. doi: 10.1056/NEJMoa1200303.
    1. Graham B.L., Steenbruggen I., Miller M.R., Barjaktarevic I.Z., Cooper B.G., Hall G.L., Hallstrand T.S., Kaminsky D.A., McCarthy K., McCormack M.C., et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019;200:e70–e88. doi: 10.1164/rccm.201908-1590ST.
    1. Campbell M., Grimshaw J., Steen N. Sample size calculations for cluster randomised trials. Changing Professional Practice in Europe Group (EU BIOMED II Concerted Action) J. Health Serv. Res. Policy. 2000;5:12–16. doi: 10.1177/135581960000500105.
    1. Lee P.N., Fry J.S. Systematic review of the evidence relating FEV1decline to giving up smoking. BMC Med. 2010;8:84. doi: 10.1186/1741-7015-8-84.
    1. Scoditti E., Massaro M., Garbarino S., Toraldo D.M. Role of Diet in Chronic Obstructive Pulmonary Disease Prevention and Treatment. Nutrients. 2019;11:1357. doi: 10.3390/nu11061357.
    1. Olson C.M. Behavioral Nutrition Interventions Using e- and m-Health Communication Technologies: A Narrative Review. Annu. Rev. Nutr. 2016;36:647–664. doi: 10.1146/annurev-nutr-071715-050815.
    1. Hamulka J., Wadolowska L., Hoffmann M., Kowalkowska J., Gutkowska K. Effect of an Education Program on Nutrition Knowledge, Attitudes toward Nutrition, Diet Quality, Lifestyle, and Body Composition in Polish Teenagers. The ABC of Healthy Eating Project: Design, Protocol, and Methodology. Nutrients. 2018;10:1439. doi: 10.3390/nu10101439.
    1. Dinu M., Pagliai G., Casini A., Sofi F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018;72:30–43. doi: 10.1038/ejcn.2017.58.
    1. Livingstone K.M., Celis-Morales C., Navas-Carretero S., San-Cristobal R., Macready A.L., Fallaize R., Forster H., Woolhead C., O’Donovan C.B., Marsaux C.F., et al. Food4Me Study. Effect of an Internet-based, personalized nutrition randomized trial on dietary changes associated with the Mediterranean diet: The Food4Me Study. Am. J. Clin. Nutr. 2016;104:288–297. doi: 10.3945/ajcn.115.129049.
    1. Jahangiry L., Montazeri A., Najafi M., Yaseri M., Farhangi M.A. An interactive web-based intervention on nutritional status, physical activity and health-related quality of life in patient with metabolic syndrome: A randomized-controlled trial (The Red Ruby Study) Nutr. Diabetes. 2017;7:e240. doi: 10.1038/nutd.2016.35.
    1. Lisón J.F., Palomar G., Mensorio M.S., Baños R.M., Cebolla-Martí A., Botella C., Benavent-Caballer V., Rodilla E. Impact of a Web-Based Exercise and Nutritional Education Intervention in Patients Who Are Obese With Hypertension: Randomized Wait-List Controlled Trial. J. Med. Internet Res. 2020;22:e14196. doi: 10.2196/14196.
    1. Sorgente A., Pietrabissa G., Manzoni G.M., Rethlefsen M., Simpson S., Perona S., Rossi A., Cattivelli R., Innamorati M., Jackson J.B., et al. Web-Based Interventions for Weight Loss or Weight Loss Maintenance in Overweight and Obese People: A Systematic Review of Systematic Reviews. J. Med. Internet Res. 2017;19:e229. doi: 10.2196/jmir.6972.
    1. Watson S., Woodside J.V., Ware L.J., Hunter S.J., McGrath A., Cardwell C.R., Appleton K.M., Young I.S., McKinley M.C. Effect of a Web-Based Behavior Change Program on Weight Loss and Cardiovascular Risk Factors in Overweight and Obese Adults at High Risk of Developing Cardiovascular Disease: Randomized Controlled Trial. J. Med. Internet Res. 2015;17:e177. doi: 10.2196/jmir.3828.
    1. Zhang Z., Monro J., Venn B.J. Development and Evaluation of an Internet-Based Diabetes Nutrition Education Resource. Nutrients. 2019;11:1217. doi: 10.3390/nu11061217.
    1. Esposito K., Maiorino M.I., Bellastella G., Chiodini P., Panagiotakos D.B., Giugliano D. A journey into a Mediterranean diet and type 2 diabetes: A systematic review with meta-analyses. BMJ Open. 2015;5:e008222. doi: 10.1136/bmjopen-2015-008222.
    1. Yu Q., Xu L., Li L., Zhi M., Gu Y., Wang X., Guo H., Li Y., Fan Y., Yang B., et al. Internet and WeChat used by patients with Crohn’s disease in China: A multi-center questionnaire survey. BMC Gastroenterol. 2019;19:97. doi: 10.1186/s12876-019-1011-3.
    1. Long M.D., Kappelman M.D., Martin C.F., Lewis J.D., Mayer L., Kinneer P.M., Sandler R.S. Development of an internet-based cohort of patients with inflammatory bowel diseases (CCFA Partners): Methodology and initial results. Inflamm. Bowel Dis. 2012;18:2099–2106. doi: 10.1002/ibd.22895.
    1. Singh D., Agusti A., Anzueto A., Barnes P.J., Bourbeau J., Celli B.R., Criner G.J., Frith P., Halpin D.M.G., Han M., et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: The GOLD science committee report 2019. Eur. Respir. J. 2019;53:1900164. doi: 10.1183/13993003.00164-2019.
    1. Yazdanpanah L., Paknahad Z., Moosavi A.J., Maracy M.R., Zaker M.M. The relationship between different diet quality indices and severity of airflow obstruction among COPD patients. Med. J. Islam. Repub. Iran. 2016;30:380.
    1. Rennard S.I., Drummond M.B. Early chronic obstructive pulmonary disease: Definition, assessment, and prevention. Lancet. 2015;385:1778–1788. doi: 10.1016/S0140-6736(15)60647-X.
    1. Verduci E., Martelli A., Miniello V., Landi M., Mariani B., Brambilla M., Diaferio L., Peroni D. Nutrition in the first 1000 days and respiratory health: A descriptive review of the last five years’ literature. Allergol. Immunopathol. 2017;45:405–413. doi: 10.1016/j.aller.2017.01.003.
    1. Joo J., Williamson S.A., I Vazquez A., Fernandez J.R., Bray M.S. Advanced Dietary Patterns Analysis Using Sparse Latent Factor Models in Young Adults. J. Nutr. 2018;148:1984–1992. doi: 10.1093/jn/nxy188.
    1. Hinnig P.D.F., Monteiro J.S., De Assis M.A.A., Levy R.B., Peres M.A., Perazi F.M., Porporatti A.L., Canto G.D.L. Dietary Patterns of Children and Adolescents from High, Medium and Low Human Development Countries and Associated Socioeconomic Factors: A Systematic Review. Nutrients. 2018;10:436. doi: 10.3390/nu10040436.
    1. Burggraf C., Teuber R., Brosig S., Meier T. Review of a priori dietary quality indices in relation to their construction criteria. Nutr. Rev. 2018;76:747–764. doi: 10.1093/nutrit/nuy027.
    1. Hlaing-Hlaing H., Pezdirc K., Tavener M., James E.L., Hure A. Diet Quality Indices Used in Australian and New Zealand Adults: A Systematic Review and Critical Appraisal. Nutrients. 2020;12:3777. doi: 10.3390/nu12123777.
    1. Asghari G., Mirmiran P., Yuzbashian E., Azizi F. A systematic review of diet quality indices in relation to obesity. Br. J. Nutr. 2017;117:1055–1065. doi: 10.1017/S0007114517000915.
    1. Zheng P.-F., Shu L., Si C.-J., Zhang X.-Y., Yu X.-L., Gao W. Dietary Patterns and Chronic Obstructive Pulmonary Disease: A Meta-analysis. COPD. 2016;13:515–522. doi: 10.3109/15412555.2015.1098606.
    1. Saussereau J., Guillien A., Soumagne T., Laplante J.-J., Laurent L., Bouhaddi M., Rocchi S., Annesi-Maesano I., Roche N., Dalphin J.-C., et al. Dietary Patterns and Prevalence of Post-bronchodilator Airway Obstruction in Dairy Farmers Exposed to Organic Dusts. COPD. 2019;16:118–125. doi: 10.1080/15412555.2019.1631775.
    1. Steinemann N., Grize L., Pons M., Rothe T., Stolz D., Turk A., Schindler C., Brombach C., Probst-Hensch N. Associations between Dietary Patterns and Post-Bronchodilation Lung Function in the SAPALDIA Cohort. Respiration. 2018;95:454–463. doi: 10.1159/000488148.
    1. Fischer A., Johansson I., Blomberg A., Sundström B. Adherence to a Mediterranean-like Diet as a Protective Factor Against COPD: A Nested Case-Control Study. COPD. 2019;16:272–277. doi: 10.1080/15412555.2019.1634039.
    1. Schwingshackl L., Schwedhelm C., Hoffmann G., Lampousi A.-M., Knüppel S., Iqbal K., Bechthold A., Schlesinger S., Boeing H. Food groups and risk of all-cause mortality: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2017;105:1462–1473. doi: 10.3945/ajcn.117.153148.
    1. GBD 2017 Diet Collaborators Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393:1958–1972. doi: 10.1016/S0140-6736(19)30041-8.
    1. Guilleminault L., Williams E.J., Scott H.A., Berthon B.S., Jensen M., Wood L.G. Diet and Asthma: Is It Time to Adapt Our Message? Nutrients. 2017;9:1227. doi: 10.3390/nu9111227.
    1. Hosseini B., Berthon B.S., Wark P., Wood L.G. Effects of Fruit and Vegetable Consumption on Risk of Asthma, Wheezing and Immune Responses: A Systematic Review and Meta-Analysis. Nutrients. 2017;9:341. doi: 10.3390/nu9040341.
    1. Hosseini B., Berthon B.S., Saedisomeolia A., Starkey M.R., Collison A., Wark P.A.B., Wood L.G. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: A systematic literature review and meta-analysis. Am. J. Clin. Nutr. 2018;108:136–155. doi: 10.1093/ajcn/nqy082.
    1. Arigliani M., Spinelli A.M., Liguoro I., Cogo P. Nutrition and Lung Growth. Nutrients. 2018;10:919. doi: 10.3390/nu10070919.
    1. Wypych T., Marsland B.J., Ubags N.D.J. The Impact of Diet on Immunity and Respiratory Diseases. Ann. Am. Thorac. Soc. 2017;14((Suppl. 5)):S339–S347. doi: 10.1513/AnnalsATS.201703-255AW.
    1. Ministry of Health Government of Spain Statistical Portal: Primary Care Information System (SIAP) [(accessed on 30 September 2021)]. Available online: .
    1. Martín-Luján F., Catalin R.-E., Salamanca-González P., Sorlí-Aguilar M., Santigosa-Ayala A., Valls-Zamora R.M., Martín-Vergara N., Canela-Armengol T., Arija-Val V., Solà-Alberich R. A clinical trial to evaluate the effect of the Mediterranean diet on smokers lung function. NPJ Prim. Care Respir. Med. 2019;29:40. doi: 10.1038/s41533-019-0153-7.

Source: PubMed

3
Suscribir