Bodyweight distribution between limbs, muscle strength, and proprioception in traumatic transtibial amputees: a cross-sectional study

Carlos Henrique da Silva Fontes Filho, Conrado Torres Laett, Ubiratã Faleiro Gavilão, José Carlos de Campos Jr, Dângelo José de Andrade Alexandre, Victor R A Cossich, Eduardo Branco de Sousa, Carlos Henrique da Silva Fontes Filho, Conrado Torres Laett, Ubiratã Faleiro Gavilão, José Carlos de Campos Jr, Dângelo José de Andrade Alexandre, Victor R A Cossich, Eduardo Branco de Sousa

Abstract

Objectives: To evaluate how transtibial amputation (TT) affects bodyweight distribution, voluntary knee joint position sense (JPS), and quadriceps (QUA) and hamstrings (HAM) strength in prosthetized patients.

Methods: Only TT patients who had been prosthetized for more than one year were included, and an age-paired able-bodied group was used as control. The participants stood on force plates with their eyes open to measure bodyweight distribution between the limbs. Knee voluntary JPS was assessed by actively reproducing a set of given arbitrary joint angles using a video analysis approach, and QUA and HAM strength were assessed isometrically with a hand-held dynamometer.

Results: Sixteen TT subjects (age: 39.4±4.8 years) and sixteen age-paired control subjects (age: 38.4±4.3 years) participated in the study. The amputees supported their bodyweight majorly on the sound limb (54.8±8.3%, p<0.001). The proprioceptive performance was similar between the amputated (absolute error (AE): 2.2±1.6°, variable error (VE): 1.9±1.6°, constant error (CE): -0.7±2.0°) and non-amputated limbs (AE: 2.6±0.9°, VE: 2.1±0.9°, CE: 0.02±2.3°), and was not different from that of control subjects (AE: 2.0±0.9°, VE: 1.4±0.4°, CE: -1.1±1.7°). There was a considerable weakness of the QUA and HAM in the amputated limb compared with the sound limb and control subjects (p<0.001 both).

Conclusions: The asymmetric bodyweight distribution in the transtibial amputees was not accompanied by a reduction in knee proprioception. There was significant weakness in the amputated limb, which could be a potential issue when designing rehabilitation programs.

Conflict of interest statement

No potential conflict of interest was reported.

Figures

Figure 1. Overview of the experimental conditions.…
Figure 1. Overview of the experimental conditions. a) Representative set-up to video recording during the joint position sense and strength evaluation. The black circles represent the Styrofoam balls used to measure distance and angles. The squares represent the positions used to set the hand-held dynamometer. b) Step-by-step representation of the joint position sense, b-1: demonstrated the start position ∼90° of knee flexion, b-2: the experienced position, b-3: the subject returning to the start position and waiting for the evaluator’s subsequent commands, b-4: the reproduced position. The difference between the reproduced and experienced positions were used for calculating proprioception indices. The angles 45° and 30° are example values.
Figure 2. A flow diagram of the…
Figure 2. A flow diagram of the recruitment, total eligible participants, and the final sample in the study.

References

    1. Pröbsting E, Bellmann M, Schmalz T, Hahn A. Gait characteristics of transtibial amputees on level ground in a cohort of 53 amputees - Comparison of kinetics and kinematics with non-amputees. Can Prosthetics Orthot J. 2020;2(2) doi: 10.33137/cpoj.v2i2.32955.
    1. De Asha AR, Buckley JG. The effects of laterality on obstacle crossing performance in unilateral trans-tibial amputees. Clin Biomech (Bristol, Avon) 2015;30(4):343–6. doi: 10.1016/j.clinbiomech.2015.03.001.
    1. Horgan O, MacLachlan M. Psychosocial adjustment to lower-limb amputation: a review. Disabil Rehabil. 2004;26(14-15):837–50. doi: 10.1080/09638280410001708869.
    1. Moxey PW, Hofman D, Hinchliffe RJ, Jones K, Thompson MM, Holt PJ. Epidemiological study of lower limb amputation in England between 2003 and 2008. Br J Surg. 2010;97(9):1348–53. doi: 10.1002/bjs.7092.
    1. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422–9. doi: 10.1016/j.apmr.2007.11.005.
    1. Katiyar AK, Agarwal H, Priyadarshini P, Kumar A, Kumar S, Gupta A, et al. Primary vs delayed primary closure in patients undergoing lower limb amputation following trauma: A randomised control study. Int Wound J. 2020;17(2):419–28. doi: 10.1111/iwj.13288.
    1. Bragaru M, Dekker R, Geertzen JH, Dijkstra PU. Amputees and sports: a systematic review. Sport Med. 2011;41(9):721–40. doi: 10.2165/11590420-000000000-00000.
    1. Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C. Knee muscle activity during ambulation of trans-tibial amputees. J Rehabil Med. 2001;33(5):196–9. doi: 10.1080/165019701750419572.
    1. Fraisse N, Martinet N, Kpadonou TJ, Paysant J, Blum A, André JM. Les muscles de l’amputé tibial Muscles of the below-knee amputees. In: Annales de réadaptation et de médecine physique. 2008:218–27.
    1. Alimusaj M, Fradet L, Braatz F, Gerner HJ, Wolf SI. Kinematics and kinetics with an adaptive ankle foot system during stair ambulation of transtibial amputees. Gait Posture. 2009;30(3):356–63. doi: 10.1016/j.gaitpost.2009.06.009.
    1. Fradet L, Alimusaj M, Braatz F, Wolf SI. Biomechanical analysis of ramp ambulation of transtibial amputees with an adaptive ankle foot system. Gait Posture. 2010;32(2):191–8. doi: 10.1016/j.gaitpost.2010.04.011.
    1. Isakov E, Burger H, Gregorič M, Marinček C. Isokinetic and isometric strength of the thigh muscles in below-knee amputees. Clin Biomech (Bristol, Avon) 1996;11(4):232–5. doi: 10.1016/0268-0033(95)00078-X.
    1. Moirenfeld I, Ayalon M, Ben-Sira D, Isakov E. Isokinetic strength and endurance of the knee extensors and flexors in trans-tibial amputees. Prosthet Orthot Int. 2000;24(3):221–5. doi: 10.1080/03093640008726551.
    1. Tugcu I, Safaz I, Yilmaz B, Göktepe AS, Taskaynatan MA, Yazicioglu K. Muscle strength and bone mineral density in mine victims with transtibial amputation. Prosthet Orthot Int. 2009;33(4):299–306. doi: 10.3109/03093640903214075.
    1. Pedrinelli A, Saito M, Coelho RF, Fontes RB, Guarniero R. Comparative study of the strength of the flexor and extensor muscles of the knee through isokinetic evaluation in normal subjects and patients subjected to trans-tibial amputation. Prosthet Orthot Int. 2002;26(3):195–205. doi: 10.1080/03093640208726648.
    1. Renström P, Grimby G, Larsson E. Thigh muscle strength in below-knee amputees. Scand J Rehabil Med Suppl. 1983;9:163–73.
    1. Lloyd CH, Stanhope SJ, Davis IS, Royer TD. Strength asymmetry and osteoarthritis risk factors in unilateral trans-tibial, amputee gait. Gait Posture. 2010;32(3):296–300. doi: 10.1016/j.gaitpost.2010.05.003.
    1. Smith DG, Fergason JR. Transtibial amputations. Clin Orthop Relat Res. 1999;(361):108–15. doi: 10.1097/00003086-199904000-00015.
    1. Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception: A critical review of methods. J Sport Health Sci. 2016;5(1):80–90. doi: 10.1016/j.jshs.2014.10.004.
    1. Eakin CL, Quesada PM, Skinner H. Lower-limb proprioception in above-knee amputees. Clin Orthop Relat Res. 1992;(284):239–46.
    1. Latanioti EP, Angoules AG, Boutsikari EC. Proprioception in above-the-knee amputees with artificial limbs. ScientificWorldJournal. 2013;2013:417982. doi: 10.1155/2013/417982.
    1. Liao KI, Skinner HB. Knee joint proprioception in below-knee amputees. Am J Knee Surg. 1995;8(3):105–9.
    1. Hillier S, Immink M, Thewlis D. Assessing Proprioception: A Systematic Review of Possibilities. Neurorehabil Neural Repair. 2015;29(10):933–49. doi: 10.1177/1545968315573055.
    1. Proske U. What is the role of muscle receptors in proprioception? Muscle Nerve. 2005;31(6):780–7. doi: 10.1002/mus.20330.
    1. Cossich V, Mallrich F, Titonelli V, de Sousa EB, Velasques B, Salles JI. Proprioceptive deficit in individuals with unilateral tearing of the anterior cruciate ligament after active evaluation of the sense of joint position. Rev Bras Ortop. 2014;49(6):607–12. doi: 10.1016/j.rbo.2013.07.009.
    1. Bennell K, Wee E, Crossley K, Stillman B, Hodges P. Effects of experimentally-induced anterior knee pain on knee joint position sense in healthy individuals. J Orthop Res. 2005;23(1):46–53. doi: 10.1016/j.orthres.2004.06.008.
    1. Isakov E, Mizrahi J, Ring H, Susak Z, Hakim N. Standing sway and weight-bearing distribution in people with below-knee amputations. Arch Phys Med Rehabil. 1992;73(2):174–8.
    1. Nadollek H, Brauer S, Isles R. Outcomes after trans-tibial amputation: the relationship between quiet stance ability, strength of hip abductor muscles and gait. Physiother Res Int. 2002;7(4):203–14. doi: 10.1002/pri.260.
    1. Hlavackova P, Franco C, Diot B, Vuillerme N. Contribution of each leg to the control of unperturbed bipedal stance in lower limb amputees: new insights using entropy. PLoS One. 2011;6(5):e19661. doi: 10.1371/journal.pone.0019661.
    1. Sadeghi H, Allard P, Duhaime M. Muscle power compensatory mechanisms in below-knee amputee gait. Am J Phys Med Rehabil. 2001;80(1):25–32. doi: 10.1097/00002060-200101000-00007.
    1. Summers GD, Morrison JD, Cochrane GM. Amputee walking training: a preliminary study of biomechanical measurements of stance and balance. Int Disabil Stud. 1988;10(1):1–5. doi: 10.3109/09638288809164048.
    1. Struyf PA, van Heugten CM, Hitters MW, Smeets RJ. The prevalence of osteoarthritis of the intact hip and knee among traumatic leg amputees. Arch Phys Med Rehabil. 2009;90(3):440–6. doi: 10.1016/j.apmr.2008.08.220.
    1. Farrokhi S, Mazzone B, Yoder A, Grant K, Wyatt M. A Narrative Review of the Prevalence and Risk Factors Associated With Development of Knee Osteoarthritis After Traumatic Unilateral Lower Limb Amputation. Mil Med. 2016;181(S4):38–44. doi: 10.7205/MILMED-D-15-00510.
    1. Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res. 1985;(198):43–9.
    1. Pueo B, Penichet-Tomas A, Jimenez-Olmedo JM. Reliability and validity of the Chronojump open-source jump mat system. Biol Sport. 2020;37(3):255–9. doi: 10.5114/biolsport.2020.95636.
    1. Bohannon RW. Hand-held compared with isokinetic dynamometry for measurement of static knee extension torque (parallel reliability of dynamometers) Clin Phys Physiol Meas. 1990;11(3):217–22. doi: 10.1088/0143-0815/11/3/004.
    1. Arvin M, Hoozemans MJ, Burger BJ, Verschueren SM, van Dieën JH, Pijnappels M. Reproducibility of a knee and hip proprioception test in healthy older adults. Aging Clin Exp Res. 2015;27(2):171–7. doi: 10.1007/s40520-014-0255-6.
    1. Nolan L, Wit A, Dudziãski K, Lees A, Lake M, Wychowaãski M. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture. 2003;17(2):142–51. doi: 10.1016/S0966-6362(02)00066-8.
    1. Jones ME, Bashford GM, Bliokas VV. Weight-bearing, pain and walking velocity during primary transtibial amputee rehabilitation. Clin Rehabil. 2001;15(2):172–6. doi: 10.1191/026921501676151107.
    1. Schmalz T, Blumentritt S, Reimers CD. Selective thigh muscle atrophy in trans-tibial amputees: an ultrasonographic study. Arch Orthop Trauma Surg. 2001;121(6):307–12. doi: 10.1007/s004020000227.

Source: PubMed

3
Suscribir