Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: a pilot study

Aiping Wang, Zongxin Ling, Zhixiang Yang, Pawel R Kiela, Tao Wang, Cheng Wang, Le Cao, Fang Geng, Mingqiang Shen, Xinze Ran, Yongping Su, Tianmin Cheng, Junping Wang, Aiping Wang, Zongxin Ling, Zhixiang Yang, Pawel R Kiela, Tao Wang, Cheng Wang, Le Cao, Fang Geng, Mingqiang Shen, Xinze Ran, Yongping Su, Tianmin Cheng, Junping Wang

Abstract

Fatigue and diarrhea are the most frequent adverse effects of pelvic radiotherapy, while their etiologies are largely unknown. The aim of this study is to investigate the correlations between fatigue, diarrhea, and alterations in gut microbiota induced by pelvic radiotherapy. During the 5-week treatment of pelvic radiotherapy in 11 cancer patients, the general fatigue score significantly increased and was more prominent in the patients with diarrhea. The fatigue score was closely correlated with the decrease of serum citrulline (an indicator of the functional enterocyte mass) and the increases of systemic inflammatory proteins, including haptoglobin, orosomuoid, α1-antitrypsin and TNF-α. Serum level of lipopolysaccharide (LPS) was also elevated, especially in the patients with diarrhea indicating epithelial barrier breach and endotoxemia. Pyrosequencing analysis of 16S rRNA gene revealed that microbial diversity, richness, and the Firmicutes/Bacteroidetes ratio were significantly altered prior to radiotherapy in patients who later developed diarrhea. Pelvic radiotherapy induced further changes in fecal microbial ecology, some of which were specific to the patients with or without diarrhea. Our results indicate that gut microbial dysbiosis prior to radiation therapy may be exploited to predict development of diarrhea and to guide preventive treatment options. Radiation-induced dysbiosis may contribute to pelvic radiation disease, including mucositis, diarrhea, systemic inflammatory response, and pelvic radiotherapy-associated fatigue in cancer patients.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. General fatigue scores in different…
Fig 1. General fatigue scores in different patient groups at indicated time points.
Each symbol represents a sample. Horizontal bar lines refer to mean value in each group. * indicates statistical differences between pre-treatment time point and 3rd or 5th week, respectively, in patients who developed diarrhea (p < 0.01, n = 6; paired t-test).
Fig 2. Biochemical systemic markers of enterocyte…
Fig 2. Biochemical systemic markers of enterocyte mass and inflammation in different patient groups at indicated time points.
Serum citruline, haptoglobin, orosomucid, and α1-antitrypsin were analyzed by ELISA, as described in Materials and Methods section. Differences within groups were analyzed by ANOVA followed Tukey post-hoc test. Differences at respective time points between the two groups were analyzed with were analyzed with unpaired t-test, *p<0.05, #p<0.01.
Fig 3. Serum concentrations of TNFα (A)…
Fig 3. Serum concentrations of TNFα (A) and LPS (B) in patients receiving pelvic radiotherapy.
TNF and LPS were analyzed by ELISA, as described in Materials and Methods section. *, # indicates statistical differences between “No diarrhea” and “Diarrhea” groups at the respective time point (*p <0.05, #p<0.01, non-parametric paired t-test, n = 5–6).
Fig 4. Fecal microbial ecology is altered…
Fig 4. Fecal microbial ecology is altered in cancer patients prior to radiotherapy.
Differences in microbial alpha diversity between healthy controls and cancer patients prior to radiotherapy who did or did not develop diarrhea is indicated by Shannon’s diversity index (A) and Chao1 species richness (B). (C) Firmicutes/Bacteroides ratio in the same groups of patients. * and # indicate statistically significant differences at p<0.05 and 0.01, respectively (ANOVA followed by Tukey post-hoc test).
Fig 5. Taxonomic analysis (relative abundance) of…
Fig 5. Taxonomic analysis (relative abundance) of fecal microbiota at phylum and genus levels.
(A) relative abundance of five main bacterial phyla as well as unclassified “Others”, which include Chloroflexi, Deferribacteres, Chlorobi, Acidobacteria, Deinococcus-Thermus, Planctomycetes, Lentisphaerae, Spirochaetes, Synergistetes, Tenericutes, Verrucomicrobia and Cyanobacteria. (B) Selected genera statistically different between cancer patients prior to radiotherapy and healthy controls. * and # indicate significant differenence from healthy controls (unpaired Mann-Whitney test). Symbol of + indicates statistical differences between cancer patients who did or did not develop diarrhea as a result of radiotherapy (unpaired Mann-Whitney test). (C, D) The effects of radiotherapy on relative microbial abundance at the genus level between patients prior and after radiotherapy within “diarrhea” and “no diarrhea” groups (paired Mann-Whitney test). (E) Taxonomic differences at the genus level between cancer patients without and with diarrhea after radiotherapy (unpaired Mann-Whitney test). *p <0.05, #p <0.01, +p<0.01.

References

    1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011; 61: 69–90. 10.3322/caac.20107
    1. Haddock MG, Sloan JA, Bollinger JW, Soori G, Steen PD, Martenson JA. Patient assessment of bowel function during and after pelvic radiotherapy: results of a prospective phase III North Central Cancer Treatment Group clinical trial. J Clin Oncol. 2007; 25: 1255–1259.
    1. Hogan NM, Kerin MJ, Joyce MR. Gastrointestinal complications of pelvic radiotherapy: medical and surgical management strategies. Curr Probl Surg. 2013; 50: 395–407. 10.1067/j.cpsurg.2013.04.004
    1. Andreyev HJ, Wotherspoon A, Denham JW, Hauer-Jensen M. Defining pelvic-radiation disease for the survivorship era. Lancet Oncol. 2010; 11: 310–312. 10.1016/S1470-2045(10)70026-7
    1. Ahlberg K, Ekman T, Gaston-Johansson F. The experience of fatigue, other symptoms and global quality of life during radiotherapy for uterine cancer. Int J Nurs Stud. 2005; 42: 377–386.
    1. Hauer-Jensen M, Denham JW, Andreyev HJ. Radiation enteropathy—pathogenesis, treatment and prevention. Nat Rev Gastroenterol Hepatol. 2014; 11: 470–479. 10.1038/nrgastro.2014.46
    1. Abayomi J, Kirwan J, Hackett A, Bagnall G. A study to investigate women's experiences of radiation enteritis following radiotherapy for cervical cancer. J Hum Nutr Diet. 2005; 18: 353–363.
    1. Jakobsson S, Ahlberg K, Taft C, Ekman T. Exploring a link between fatigue and intestinal injury during pelvic radiotherapy. Oncologist. 2010; 15: 1009–1015. 10.1634/theoncologist.2010-0097
    1. Ryan JL, Carroll JK, Ryan EP, Mustian KM, Fiscella K, Morrow GR. Mechanisms of cancer-related fatigue. Oncologist 12 Suppl. 2007; 1: 22–34.
    1. Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci. 2014; 34: 15490–15496. 10.1523/JNEUROSCI.3299-14.2014
    1. Manichanh C, Varela E, Martinez C, Antolin M, Llopis M, Dore J, et al. The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea. Am J Gastroenterol. 2008; 103: 1754–1761. 10.1111/j.1572-0241.2008.01868.x
    1. Kim YS, Kim J, Park SJ. High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe. 2015; 33C: 1–7.
    1. Crawford PA, Gordon JI. Microbial regulation of intestinal radiosensitivity. Proc Natl Acad Sci U S A. 2005; 102: 13254–13259.
    1. Delia P, Sansotta G, Donato V, Messina G, Frosina P, Pergolizzi S, et al. Prevention of radiation-induced diarrhea with the use of VSL#3, a new high-potency probiotic preparation. Am J Gastroenterol. 2002; 97: 2150–2152.
    1. Urbancsek H, Kazar T, Mezes I, Neumann K. Results of a double-blind, randomized study to evaluate the efficacy and safety of Antibiophilus in patients with radiation-induced diarrhoea. Eur J Gastroenterol Hepatol. 2001; 13: 391–396.
    1. Ferreira MR, Muls A, Dearnaley DP, Andreyev HJ. Microbiota and radiation-induced bowel toxicity: lessons from inflammatory bowel disease for the radiation oncologist. Lancet Oncol. 2014; 15: e139–147. 10.1016/S1470-2045(13)70504-7
    1. Schubert C, Hong S, Natarajan L, Mills PJ, Dimsdale JE. The association between fatigue and inflammatory marker levels in cancer patients: a quantitative review. Brain Behav Immun. 2007; 21: 413–427.
    1. Trotti A, Byhardt R, Stetz J, Gwede C, Corn B, Fu K, et al. Common toxicity criteria: version 2.0. an improved reference for grading the acute effects of cancer treatment: impact on radiotherapy. Int J Radiat Oncol Biol Phys. 2000; 47: 13–47.
    1. Hagelin CL, Wengstrom Y, Runesdotter S, Furst CJ. The psychometric properties of the Swedish Multidimensional Fatigue Inventory MFI-20 in four different populations. Acta Oncol. 2007; 46: 97–104.
    1. Ling Z, Liu X, Luo Y, Yuan L, Nelson KE, Wang Y, et al. Pyrosequencing analysis of the human microbiota of healthy Chinese undergraduates. BMC Genomics. 2013; 14: 390 10.1186/1471-2164-14-390
    1. Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A. 2008; 105: 17994–17999. 10.1073/pnas.0807920105
    1. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, et al. (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011; 21: 494–504. 10.1101/gr.112730.110
    1. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007; 35: 7188–7196.
    1. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009; 75: 7537–7541. 10.1128/AEM.01541-09
    1. Rosen GL, Reichenberger ER, Rosenfeld AM. NBC: the Naive Bayes Classification tool webserver for taxonomic classification of metagenomic reads. Bioinformatics. 2011; 27: 127–129. 10.1093/bioinformatics/btq619
    1. Lozupone C, Hamady M, Knight R. UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics. 2006; 7: 371
    1. Crenn P, Coudray-Lucas C, Thuillier F, Cynober L, Messing B. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology. 2000; 119: 1496–1505.
    1. Lutgens LC, Deutz N, Granzier-Peeters M, Beets-Tan R, De Ruysscher D, Gueulette J, et al. Plasma citrulline concentration: a surrogate end point for radiation-induced mucosal atrophy of the small bowel. A feasibility study in 23 patients. Int J Radiat Oncol Biol Phys. 2004; 60: 275–285.
    1. Atherton PJ, Halyard MY, Sloan JA, Miller RC, Deming RL, Tai TH, et al. Assessment of patient-reported measures of bowel function before and after pelvic radiotherapy: an ancillary study of the North Central Cancer Treatment Group study N00CA. Support Care Cancer. 2013; 21: 1193–1199. 10.1007/s00520-012-1648-8
    1. Wedlake L, McGough C, Hackett C, Thomas K, Blake P, Harrington K, et al. Can biological markers act as non-invasive, sensitive indicators of radiation-induced effects in the gastrointestinal mucosa? Aliment Pharmacol Ther. 2008; 27: 980–987. 10.1111/j.1365-2036.2008.03663.x
    1. Touchefeu Y, Montassier E, Nieman K, Gastinne T, Potel G, Bruley des Varannes S, et al. Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis—current evidence and potential clinical applications. Aliment Pharmacol Ther. 2014; 40: 409–421. 10.1111/apt.12878
    1. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013; 500: 232–236. 10.1038/nature12331
    1. Miquel S, Martin R, Rossi O, Bermudez-Humaran LG, Chatel JM, Sokol H, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013; 16: 255–261. 10.1016/j.mib.2013.06.003
    1. Fuccio L, Frazzoni L, Guido A. Prevention of pelvic radiation disease. World J Gastrointest Pharmacol Ther. 2015; 6: 1–9. 10.4292/wjgpt.v6.i1.1

Source: PubMed

3
Suscribir