"Spatial heterogeneity of environmental risk in randomized prevention trials: consequences and modeling"

Abdoulaye Guindo, Issaka Sagara, Boukary Ouedraogo, Kankoe Sallah, Mahamadoun Hamady Assadou, Sara Healy, Patrick Duffy, Ogobara K Doumbo, Alassane Dicko, Roch Giorgi, Jean Gaudart, Abdoulaye Guindo, Issaka Sagara, Boukary Ouedraogo, Kankoe Sallah, Mahamadoun Hamady Assadou, Sara Healy, Patrick Duffy, Ogobara K Doumbo, Alassane Dicko, Roch Giorgi, Jean Gaudart

Abstract

Background: In the context of environmentally influenced communicable diseases, proximity to environmental sources results in spatial heterogeneity of risk, which is sometimes difficult to measure in the field. Most prevention trials use randomization to achieve comparability between groups, thus failing to account for heterogeneity. This study aimed to determine under what conditions spatial heterogeneity biases the results of randomized prevention trials, and to compare different approaches to modeling this heterogeneity.

Methods: Using the example of a malaria prevention trial, simulations were performed to quantify the impact of spatial heterogeneity and to compare different models. Simulated scenarios combined variation in baseline risk, a continuous protective factor (age), a non-related factor (sex), and a binary protective factor (preventive treatment). Simulated spatial heterogeneity scenarios combined variation in breeding site density and effect, location, and population density. The performances of the following five statistical models were assessed: a non-spatial Cox Proportional Hazard (Cox-PH) model and four models accounting for spatial heterogeneity-i.e., a Data-Generating Model, a Generalized Additive Model (GAM), and two Stochastic Partial Differential Equation (SPDE) models, one modeling survival time and the other the number of events. Using a Bayesian approach, we estimated the SPDE models with an Integrated Nested Laplace Approximation algorithm. For each factor (age, sex, treatment), model performances were assessed by quantifying parameter estimation biases, mean square errors, confidence interval coverage rates (CRs), and significance rates. The four models were applied to data from a malaria transmission blocking vaccine candidate.

Results: The level of baseline risk did not affect our estimates. However, with a high breeding site density and a strong breeding site effect, the Cox-PH and GAM models underestimated the age and treatment effects (but not the sex effect) with a low CR. When population density was low, the Cox-SPDE model slightly overestimated the effect of related factors (age, treatment). The two SPDE models corrected the impact of spatial heterogeneity, thus providing the best estimates.

Conclusion: Our results show that when spatial heterogeneity is important but not measured, randomization alone cannot achieve comparability between groups. In such cases, prevention trials should model spatial heterogeneity with an adapted method.

Trial registration: The dataset used for the application example was extracted from Vaccine Trial #NCT02334462 ( ClinicalTrials.gov registry).

Keywords: Environmental factors; Integrated Nested Laplace Approximation; Randomized prevention trials; Spatial heterogeneity; Stochastic Partial Differential Equation.

Conflict of interest statement

Competing interests are related to Vaccine Trial #NCT02334462 (ClinicalTrials.gov registry). The Rodolphe Mérieux laboratory was the manufacturer of the vaccine. Professor Patrick Duffy, co-author of this article, was appointed by the US National Institute of Health (NIH), which also sponsored the vaccine trial.

Figures

Fig. 1
Fig. 1
Simulation scheme for the different scenarios
Fig. 2
Fig. 2
Structure of simulated data (the size of the points is proportional to survival time)
Fig. 3
Fig. 3
Bias of the treatment effect with a baseline risk of 0.37 DGM: Data-Generating Model, Cox-PH: Cox Proportional Hazard model, GAM: Generalized Additive Model, Cox-SPDE: Cox Stochastic Partial Differential Equation Model, P-SPDE: Poisson Stochastic Partial Differential Equation, RRb: Breeding site Relative Risk, Db: Breeding site Density, RRt: Treatment Relative Risk, Pop.Dens: Population Density, Risk0: Baseline Risk
Fig. 4
Fig. 4
CR of the treatment effect with a baseline risk of 0.37. DGM: Data-Generating Model, Cox-PH: Cox Proportional Hazard model, GAM: Generalized Additive Model, Cox-SPDE: Cox Stochastic Partial Differential Equation Model, P-SPDE: Poisson Stochastic Partial Differential Equation, RRb: Breeding site Relative Risk, Db: Breeding site Density, RRt: Treatment Relative Risk, Pop.Dens: Population Density, Risk0: Baseline Risk.
Fig. 5
Fig. 5
SR of the treatment effect with a baseline risk of 0.37. DGM: Data-Generating Model, Cox-PH: Cox Proportional Hazard model, GAM: Generalized Additive Model, Cox-SPDE: Cox Stochastic Partial Differential Equation Model, P-SPDE: Poisson Stochastic Partial Differential Equation, RRb: Breeding site Relative Risk, Db: Breeding site Density, RRt: Treatment Relative Risk, Pop.Dens: Population Density, Risk0: Baseline Risk.

References

    1. Hiscox A, Homan T, Vreugdenhil C, Otieno B, Kibet A, Mweresa CK, et al. Spatial heterogeneity of malaria vectors and malaria transmission risk estimated using odour-baited mosquito traps. Malar J. 2014;13 Suppl 1:P41. doi:10.1186/1475-2875-13-S1-P41.
    1. Tine RCK, Ndour CT, Faye B, Cairns M, Sylla K, Ndiaye M, et al. Feasibility, safety and effectiveness of combining home based malaria management and seasonal malaria chemoprevention in children less than 10 years in Senegal: a cluster-randomised trial. Trans R Soc Trop Med Hyg. 2014;108:13–21. doi: 10.1093/trstmh/trt103.
    1. Barry A, Issiaka D, Traore T, Mahamar A, Diarra B, Sagara I, et al. Optimal mode for delivery of seasonal malaria chemoprevention in Ouelessebougou. Mali: A cluster randomized trial. PLOS ONE. 2018;13:e0193296. doi: 10.1371/journal.pone.0193296.
    1. Tine RC, Faye B, Ndour CT, Ndiaye JL, Ndiaye M, Bassene C, et al. Impact of combining intermittent preventive treatment with home management of malaria in children less than 10 years in a rural area of Senegal: a cluster randomized trial. Malar J. 2011;10:358. doi: 10.1186/1475-2875-10-358.
    1. Thera MA, Kone AK, Tangara B, Diarra E, Niare S, Dembele A, et al. School-aged children based seasonal malaria chemoprevention using artesunate-amodiaquine in Mali. Parasite Epidemiol Control. 2018;3:96–105. doi: 10.1016/j.parepi.2018.02.001.
    1. Getachew Y, Janssen P, Yewhalaw D, Speybroeck N, Duchateau L. Coping with time and space in modelling malaria incidence: a comparison of survival and count regression models. Stat Med. 2013;32:3224–3233. doi: 10.1002/sim.5752.
    1. Li Y, Ryan L. Modeling spatial survival data using semiparametric frailty models. Biometrics. 2002;58:287–297. doi: 10.1111/j.0006-341X.2002.00287.x.
    1. Gangnon RE, Clayton MK. A hierarchical model for spatially clustered disease rates. Stat Med. 2003;22:3213–3228. doi: 10.1002/sim.1570.
    1. Sissoko MS, Sauerwein RW, Knight P, Bousema T, Coulibaly M, Samake Y, et al. Spatial patterns of Plasmodium falciparum clinical incidence, asymptomatic parasite carriage and Anopheles Density in Two Villages in Mali. Am J Trop Med Hyg. 2015;93:790–797. doi: 10.4269/ajtmh.14-0765.
    1. Overgaard HJ, Olano VA, Jaramillo JF, Matiz MI, Sarmiento D, Stenström TA, et al. A cross-sectional survey of Aedes aegypti immature abundance in urban and rural household containers in central Colombia. Parasit Vectors. 2017;10. 10.1186/s13071-017-2295-1.
    1. Imbahale SS, Paaijmans KP, Mukabana WR, van Lammeren R, Githeko AK, Takken W. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J. 2011;10. 10.1186/1475-2875-10-81.
    1. Gao Q, Wang F, Lv X, Cao H, Su F, Zhou J, et al. Aedes albopictus production in urban stormwater catch basins and manhole chambers of downtown Shanghai. China. PLOS ONE. 2018;13:e0201607. doi: 10.1371/journal.pone.0201607.
    1. Pandey S, Das MK, Dhiman RC. Diversity of breeding habitats of anophelines (Diptera: Culicidae) in Ramgarh district, Jharkhand. India. J Vector Borne Dis. 2016;53–4:327–334.
    1. Thomas S, Ravishankaran S, Justin JA, Asokan A, Mathai MT, Valecha N, et al. Overhead tank is the potential breeding habitat of Anopheles stephensi in an urban transmission setting of Chennai. India. Malar J. 2016;15. 10.1186/s12936-016-1321-7.
    1. Young RL, Weinberg J, Vieira V, Ozonoff A, Webster TF. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting. Int J Health Geogr. 2010;9:37. doi: 10.1186/1476-072X-9-37.
    1. Vieira VM, Weinberg JM, Webster TF. Individual-level space-time analyses of emergency department data using generalized additive modeling. BMC Public Health. 2012;12. 10.1186/1471-2458-12-687.
    1. Rebaudet S, Griffiths K, Trazillio M, Lebeau A-G, Abedi AA, Bulit G, et al. Cholera spatial-temporal patterns in Gonaives, Haiti: From contributing factors to targeted recommendations. Adv Water Resour. 2017;108:377–385. doi: 10.1016/j.advwatres.2016.12.012.
    1. Tobler WR. A computer movie simulating urban growth in the detroit region. Econ Geogr. 1970;46:234. doi: 10.2307/143141.
    1. Lindgren F, Rue H, Lindström J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J R Stat Soc Ser B Stat Methodol. 2011;73:423–498. doi: 10.1111/j.1467-9868.2011.00777.x.
    1. Cameletti M, Lindgren F, Simpson D, Rue H. Spatio-temporal modeling of particulate matter concentration through the SPDE approach. AStA Adv Stat Anal. 2013;97:109–131. doi: 10.1007/s10182-012-0196-3.
    1. Musenge E, Chirwa TF, Kahn K, Vounatsou P. Bayesian analysis of zero inflated spatiotemporal HIV/TB child mortality data through the INLA and SPDE approaches: Applied to data observed between 1992 and 2010 in rural North East South Africa. Int J Appl Earth Obs Geoinformation. 2013;22:86–98. doi: 10.1016/j.jag.2012.04.001.
    1. Núñez O, Fernández-Navarro P, Martín-Méndez I, Bel-Lan A, Locutura JF, López-Abente G. Arsenic and chromium topsoil levels and cancer mortality in Spain. Environ Sci Pollut Res. 2016;23:17664–17675. doi: 10.1007/s11356-016-6806-y.
    1. Lenaerts E, Mandro M, Mukendi D, Suykerbuyk P, Dolo H, Wonya’Rossi D, et al. High prevalence of epilepsy in onchocerciasis endemic health areas in Democratic Republic of the Congo. Infect Dis Poverty. 2018;7. 10.1186/s40249-018-0452-1.
    1. Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Stat Med. 2006;25:4279–4292. doi: 10.1002/sim.2673.
    1. USAID. The DHS program STATcompiler. 2016. . Accessed 1 Jan 2017.
    1. Midega JT, Mbogo CM, Mwambi H, Wilson MD, Ojwang G, Mwangangi JM, et al. Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark–release–recapture methods. J Med Entomol. 2007;44:923–929. 10.1603/0022-2585(2007)44[923,EDASOA];2. Accessed 24 Jul 2017.
    1. Bousema T, Stresman G, Baidjoe AY, Bradley J, Knight P, Stone W, et al. The impact of hotspot-targeted interventions on malaria transmission in Rachuonyo south district in the western Kenyan highlands: A cluster-randomized controlled trial. PLOS Med. 2016;13:e1001993. doi: 10.1371/journal.pmed.1001993.
    1. Toure OA, Valecha N, Tshefu AK, Thompson R, Krudsood S, Gaye O, et al. A phase 3, double-blind, randomized study of arterolane maleate–piperaquine phosphate vs artemether–lumefantrine for falciparum malaria in adolescent and adult patients in Asia and Africa. Clin Infect Dis. 2016;62:964–971. doi: 10.1093/cid/ciw029.
    1. Thera MA, Coulibaly D, Kone AK, Guindo AB, Traore K, Sall AH, et al. Phase 1 randomized controlled trial to evaluate the safety and immunogenicity of recombinant Pichia pastoris-expressed Plasmodium falciparum apical membrane antigen 1 (PfAMA1-FVO [25-545]) in healthy Malian adults in Bandiagara. Malar J. 2016;15. 10.1186/s12936-016-1466-4.
    1. Sissoko MS, Healy SA, Katile A, Omaswa F, Zaidi I, Gabriel EE, et al. Safety and efficacy of PfSPZ Vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. Lancet Infect Dis. 2017;17:498–509. doi: 10.1016/S1473-3099(17)30104-4.
    1. Dama S, Niangaly H, Djimde M, Sagara I, Guindo CO, Zeguime A, et al. A randomized trial of dihydroartemisinin–piperaquine versus artemether–lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Mali. Malar J. 2018;17. 10.1186/s12936-018-2496-x.
    1. Dicko A, Brown JM, Diawara H, Baber I, Mahamar A, Soumare HM, et al. Primaquine to reduce transmission of Plasmodium falciparum malaria in Mali: a single-blind, dose-ranging, adaptive randomised phase 2 trial. Lancet Infect Dis. 2016;16:674–684. doi: 10.1016/S1473-3099(15)00479-X.
    1. Demographie M. Atlas des populations et pays du monde. 2017.
    1. Lee ET, Wang JW. Statistical methods for survival data analysis. 3. New York: J. Wiley; 2003. pp. 1–165.
    1. David C. Modelling survival data in medical research. 2. London: Chapman and Hall/CRC; 2003. Modelling survival data; pp. 55–109.
    1. Wood SN. Generalized additive models: an introduction with R. 2. London: Chapman and Hall/CRC; 2017. pp. 136–171.
    1. Rue H, Martino S, Chopin N. Approximate bayesian inference for latent gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B Stat Methodol. 2009;71:319–392. doi: 10.1111/j.1467-9868.2008.00700.x.
    1. Rue H, Riebler A, Sørbye SH, Illian JB, Simpson DP, Lindgren FK. Bayesian computing with INLA: a Review. Annu Rev Stat Its Appl. 2017;4:395–421. doi: 10.1146/annurev-statistics-060116-054045.
    1. Li L, Wu J, Wilhelm M, Ritz B. Use of generalized additive models and cokriging of spatial residuals to improve land-use regression estimates of nitrogen oxides in Southern California. Atmos Environ. 2012;55:220–228. doi: 10.1016/j.atmosenv.2012.03.035.
    1. Venables WN, Dichmont CM. GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fish Res. 2004;70:319–337. doi: 10.1016/j.fishres.2004.08.011.
    1. Lindgren F, Rue H. Bayesian spatial modelling with R-INLA. J Stat Softw. 2015;63. doi:10.18637/jss.v063.i19.
    1. Minasny B. McBratney AlexB. The Matèrn function as a general model for soil variograms. Geoderma. 2005;128:192–207. doi: 10.1016/j.geoderma.2005.04.003.
    1. Crowther MJ, Riley RD, Staessen JA, Wang J, Gueyffier F, Lambert PC. Individual patient data meta-analysis of survival data using Poisson regression models. BMC Med Res Methodol. 2012;12:34. doi: 10.1186/1471-2288-12-34.
    1. Simpson D, Illian JB, Lindgren F, Sørbye SH, Rue H. Going off grid: computationally efficient inference for log-Gaussian Cox processes. Biometrika. 2016;103:49–70. doi: 10.1093/biomet/asv064.
    1. Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate statistical methods. Stat Med. 2019;38:2074–2102. doi: 10.1002/sim.8086.
    1. Farrance CE, Rhee A, Jones RM, Musiychuk K, Shamloul M, Sharma S, et al. A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum. Clin Vaccine Immunol. 2011;18:1351–1357. doi: 10.1128/CVI.05105-11.
    1. Patrick E D. Study of the Safety and Immunogenicity of Pfs230D1M-EPA/Alhydrogel and Pfs25M-EPA/Alhydrogel , a Transmission Blocking Vaccine Against Plasmodium Falciparum Malaria, in Adults in the U.S. and Mali. 2015. . Accessed 5 Oct 2018.
    1. Nissen A, Cook J, Loha E, Lindtjørn B. Proximity to vector breeding site and risk of Plasmodium vivax infection: a prospective cohort study in rural Ethiopia. Malar J. 2017;16. 10.1186/s12936-017-2031-5.
    1. Umlauf N, Adler D, Kneib T, Lang S, Zeileis A. Structured additive regression models: An R interface to BayesX. J Stat Softw. 2015;63. doi:10.18637/jss.v063.i21.
    1. Brezger A, Kneib T, Lang S. BayesX : Analyzing bayesian structured additive regression models. J Stat Softw. 2005;14. doi:10.18637/jss.v014.i11.
    1. Adebayo SB, Gayawan E, Heumann C, Seiler C. Joint modeling of anaemia and malaria in children under five in Nigeria. Spat Spatio-Temporal Epidemiol. 2016;17:105–115. doi: 10.1016/j.sste.2016.04.011.
    1. Fahrmeir L, Kneib T, Lang S. Penalized structured additive regression for space-time data: A bayesian perspective. Stat Sin. 2004;14:731–761.
    1. Banerjee S, Wall MM, Carlin BP. Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. Biostatistics. 2003;4:123–142. doi: 10.1093/biostatistics/4.1.123.
    1. Dekker FW, de Mutsert R, van Dijk PC, Zoccali C, Jager KJ. Survival analysis: time-dependent effects and time-varying risk factors. Kidney Int. 2008;74:994–997. doi: 10.1038/ki.2008.328.
    1. Fisher LD, Lin DY. Time-dependent covariates in the cox proportional-hazards regression model. Annu Rev Public Health. 1999;20:145–157. doi: 10.1146/annurev.publhealth.20.1.145.
    1. Kenneth RH. Assessing time-by-covariate interactions in proportional hazards regression models using cubic spline functions. Sat Med. 1994;13(10):1045–1062. doi: 10.1002/sim.4780131007.
    1. Wheeler DC, Waller LA, Cozen W, Ward MH. Spatial–temporal analysis of non-Hodgkin lymphoma risk using multiple residential locations. Spat Spatio-Temporal Epidemiol. 2012;3:163–171. doi: 10.1016/j.sste.2012.04.009.

Source: PubMed

3
Suscribir