Increases in Circulating and Fecal Butyrate are Associated With Reduced Blood Pressure and Hypertension: Results From the SPIRIT Trial

Curtis Tilves, Hsin-Chieh Yeh, Nisa Maruthur, Stephen P Juraschek, Edgar Miller, Karen White, Lawrence J Appel, Noel T Mueller, Curtis Tilves, Hsin-Chieh Yeh, Nisa Maruthur, Stephen P Juraschek, Edgar Miller, Karen White, Lawrence J Appel, Noel T Mueller

Abstract

Background Short chain fatty acids (SCFAs) are microbially derived end products of dietary fiber fermentation. The SCFA butyrate reduces blood pressure (BP) in mouse models. The association of SCFAs, including butyrate, with BP in humans is unclear, due in part to predominantly cross-sectional analyses and different biospecimens (blood versus fecal) for SCFA measurement. Longitudinal studies including both circulating and fecal SCFAs are lacking. Methods and Results We leveraged existing data from the SPIRIT (Survivorship Promotion In Reducing IGF-1 Trial), which randomized 121 adult cancer survivors with overweight/obesity to a behavioral weight-loss intervention, metformin, or self-directed weight-loss. Of participants with baseline serum and fecal SCFAs measured (n=111), a subset had serum (n=93) and fecal (n=89) SCFA measurements 12 months later. We used Poisson regression with robust error variance to estimate baseline associations of SCFAs with hypertension, and we assessed the percent change in SCFAs from baseline with corresponding 12-month changes in BP using multiple linear regression. Baseline fecal butyrate was inversely associated with prevalent hypertension (standardized PR [95%CI]: 0.71 [0.54, 0.92]). A 10% increase in fecal butyrate from baseline was associated with decreased systolic BP (β [95%CI]: -0.56 [-1.01, -0.10] mm Hg), and a 10% increase in serum butyrate was associated with decreased systolic (β [95%CI]: -1.39 [-2.15, -0.63] mm Hg) and diastolic (β [95%CI]: -0.55 [-1.03, -0.08] mm Hg) BPs. Butyrate associations with systolic BP were linear and not modified by sex, race, or intervention arm. Conclusions Increased serum or fecal butyrate is associated with lowered BP. Butyrate may be a target for SCFA-centered BP-lowering interventions. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02431676.

Keywords: acetic acid; blood pressure; butyric acid; fatty acids; hypertension; volatile.

Figures

Figure. Forest plots of sex‐stratified β (95%…
Figure. Forest plots of sex‐stratified β (95% CI) for effect of a 10% increase in SCFAs from baseline on change in SBP.
Coefficients obtained from sex‐stratified multivariable regression models adjusting for baseline age, baseline BMI, baseline blood pressure (SBP or DBP), intervention group, baseline antihypertensive medication use, baseline fiber intake, change in weight, and percent change in other serum or fecal SCFAs. BMI indicates body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure; and SCFA, short chain fatty acid. *SCFAs significantly modified by sex.

References

    1. Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, Mohammed M, Handberg E, Richards E, Pepine C, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond). 2018;132:701–718. doi: 10.1042/CS20180087
    1. Onyszkiewicz M, Gawrys‐Kopczynska M, Konopelski P, Aleksandrowicz M, Sawicka A, Koźniewska E, Samborowska E, Ufnal M. Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon‐vagus nerve signaling and GPR41/43 receptors. Pflügers Archiv ‐ Eur J Physiol. 2019;471:1441–1453. doi: 10.1007/s00424-019-02322-y
    1. Yang T, Magee KL, Colon‐Perez LM, Larkin R, Liao Y‐S, Balazic E, Cowart JR, Arocha R, Redler TY, Febo M, et al. Impaired butyrate absorption in the proximal colon, low serum butyrate and diminished central effects of butyrate on blood pressure in spontaneously hypertensive rats. Acta Physiol (Oxf). 2019;226:e13256. doi: 10.1111/apha.13256
    1. Pluznick JL. Microbial short‐chain fatty acids and blood pressure regulation. Curr Hypertens Rep. 2017;19:25. doi: 10.1007/s11906-017-0722-5
    1. Poll BG, Cheema MU, Pluznick JL. Gut microbial metabolites and blood pressure regulation: focus on SCFAs and TMAO. Physiology (Bethesda, Md). 2020;35:275–284. doi: 10.1152/physiol.00004.2020
    1. Liu H, Wang J, He T, Becker S, Zhang G, Li D, Ma X. Butyrate: a double‐edged sword for health? Adv Nutr. 2018;9:21–29. doi: 10.1093/advances/nmx009
    1. de la Cuesta‐Zuluaga J, Mueller NT, Alvarez‐Quintero R, Velasquez‐Mejia EP, Sierra JA, Corrales‐Agudelo V, Carmona JA, Abad JM, Escobar JS. Higher fecal short‐chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients. 2018;11:51. doi: 10.3390/nu11010051
    1. Calderón‐Pérez L, Gosalbes MJ, Yuste S, Valls RM, Pedret A, Llauradó E, Jimenez‐Hernandez N, Artacho A, Pla‐Pagà L, Companys J, et al. Gut metagenomic and short chain fatty acids signature in hypertension: a cross‐sectional study. Sci Rep. 2020;10:6436. doi: 10.1038/s41598-020-63475-w
    1. Mueller NT, Zhang M, Juraschek SP, Miller ER, Appel LJ. Effects of high‐fiber diets enriched with carbohydrate, protein, or unsaturated fat on circulating short chain fatty acids: results from the OmniHeart randomized trial. Am J Clin Nutr. 2020;111:545–554. doi: 10.1093/ajcn/nqz322
    1. Huart J, Leenders J, Taminiau B, Descy J, Saint‐Remy A, Daube G, Krzesinski JM, Melin P, de Tullio P, Jouret F. Gut microbiota and fecal levels of short‐chain fatty acids differ upon 24‐hour blood pressure levels in men. Hypertension. 2019;74:1005–1013. doi: 10.1161/HYPERTENSIONAHA.118.12588
    1. Chang Y, Chen Y, Zhou Q, Wang C, Chen L, Di W, Zhang Y. Short‐chain fatty acids accompanying changes in the gut microbiome contribute to the development of hypertension in patients with preeclampsia. Clin Sci (Lond). 2020;134:289–302. doi: 10.1042/cs20191253
    1. Verhaar BJH, Collard D, Prodan A, Levels JHM, Zwinderman AH, Bäckhed F, Vogt L, Peters MJL, Muller M, Nieuwdorp M, et al. Associations between gut microbiota, faecal short‐chain fatty acids, and blood pressure across ethnic groups: the HELIUS study. Eur Heart J. 2020;41:4259–4267. doi: 10.1093/eurheartj/ehaa704
    1. Chen L, He FJ, Dong Y, Huang Y, Wang C, Harshfield GA, Zhu H. Modest sodium reduction increases circulating short‐chain fatty acids in untreated hypertensives: a randomized, double‐blind. Placebo‐controlled trial. Hypertension. 2020;76:73–79. doi: 10.1161/HYPERTENSIONAHA.120.14800
    1. Vijay A, Astbury S, Panayiotis L, Marques FZ, Spector TD, Menni C, Valdes AM. Dietary interventions reduce traditional and novel cardiovascular risk markers by altering the gut microbiome and their metabolites. Front Cardiovasc Med. 2021;8. doi: 10.3389/fcvm.2021.691564
    1. Müller M, Hernández MAG, Goossens GH, Reijnders D, Holst JJ, Jocken JWE, van Eijk H, Canfora EE, Blaak EE. Circulating but not faecal short‐chain fatty acids are related to insulin sensitivity, lipolysis and GLP‐1 concentrations in humans. Sci Rep. 2019;9:12515. doi: 10.1038/s41598-019-48775-0
    1. Yeh HC, Maruthur NM, Wang NY, Jerome GJ, Dalcin AT, Tseng E, White K, Miller ER, Juraschek SP, Mueller NT, et al. Effects of behavioral weight loss and metformin on insulin‐like growth factors in cancer survivors: a randomized trial. J Clin Endocrinol Metab. 2021;106:e4179–e4191. doi: 10.1210/clinem/dgab266
    1. Zhao G, Nyman M, Jönsson JA. Rapid determination of short‐chain fatty acids in colonic contents and faeces of humans and rats by acidified water‐extraction and direct‐injection gas chromatography. Biomed Chromatogr: BMC. 2006;20:674–682. doi: 10.1002/bmc.580
    1. Mueller NT, Differding MK, Zhang M, Maruthur NM, Juraschek SP, Miller ER III, Appel LJ, Yeh HC. Metformin affects gut microbiome composition and function and circulating short‐chain fatty acids: a randomized trial. Diabetes Care. 2021;44:1462–1471. doi: 10.2337/dc20-2257
    1. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71:e13–e115. doi: 10.1161/hyp.0000000000000065
    1. Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, Godleski JJ, Coull BA. Bayesian kernel machine regression for estimating the health effects of multi‐pollutant mixtures. Biostatistics (Oxford, England). 2015;16:493–508. doi: 10.1093/biostatistics/kxu058
    1. Buckley JP, Doherty BT, Keil AP, Engel SM. Statistical approaches for estimating sex‐specific effects in endocrine disruptors research. Environ Health Perspect. 2017;125:067013. doi: 10.1289/EHP334
    1. Bobb JF, Claus Henn B, Valeri L, Coull BA. Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ Health. 2018;17:67. doi: 10.1186/s12940-018-0413-y
    1. Harrell FE Jr. rms: Regression Modeling Strategies . 2021.
    1. Rahat‐Rozenbloom S, Fernandes J, Gloor GB, Wolever TM. Evidence for greater production of colonic short‐chain fatty acids in overweight than lean humans. Int J Obes (2002). 2014;38:1525–1531. doi: 10.1038/ijo.2014.46
    1. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18:190–195. doi: 10.1038/oby.2009.167
    1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity‐associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414
    1. Lin HV, Frassetto A, Kowalik Jr EJ, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, et al. Butyrate and propionate protect against diet‐induced obesity and regulate gut hormones via free fatty acid receptor 3‐independent mechanisms. PLoS One. 2012;7:e35240. doi: 10.1371/journal.pone.0035240
    1. Lu Y, Fan C, Li P, Lu Y, Chang X, Qi K. Short chain fatty acids prevent high‐fat‐diet‐induced obesity in mice by regulating G protein‐coupled receptors and gut microbiota. Sci Rep. 2016;6:37589. doi: 10.1038/srep37589
    1. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac‐Varghese SEK, MacDougall K, Preston T, Tedford C, Finlayson GS, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64:1744. doi: 10.1136/gutjnl-2014-307913
    1. Robles‐Vera I, Toral M, la Visitación N, Sánchez M, Gómez‐Guzmán M, Romero M, Yang T, Izquierdo‐Garcia JL, Jiménez R, Ruiz‐Cabello J, et al. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: role of short‐chain fatty acids. Mol Nutr Food Res. 2020;64:e1900616. doi: 10.1002/mnfr.201900616
    1. Kaye DM, Shihata WA, Jama HA, Tsyganov K, Ziemann M, Kiriazis H, Horlock D, Vijay A, Giam B, Vinh A, et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite‐sensing receptors leads to cardiovascular disease. Circulation. 2020;141:1393–1403. doi: 10.1161/circulationaha.119.043081
    1. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA. Short chain fatty acids (SCFAs)‐mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277
    1. Markle JG, Frank DN, Mortin‐Toth S, Robertson CE, Feazel LM, Rolle‐Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS. Sex differences in the gut microbiome drive hormone‐dependent regulation of autoimmunity. Science. 2013;339:1084–1088. doi: 10.1126/science.1233521
    1. Wallis A, Butt H, Ball M, Lewis DP, Bruck D. Support for the microgenderome: associations in a human clinical population. Sci Rep. 2016;6:19171. doi: 10.1038/srep19171
    1. Gillis EE, Sullivan JC. Sex differences in hypertension: recent advances. Hypertension. 2016;68:1322–1327. doi: 10.1161/hypertensionaha.116.06602
    1. Regitz‐Zagrosek V, Kararigas G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol Rev. 2017;97:1–37. doi: 10.1152/physrev.00021.2015
    1. Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, Lusis AJ, Knight R, Caporaso JG, Svanbäck R. Individual diet has sex‐dependent effects on vertebrate gut microbiota. Nat Commun. 2014;5:4500. doi: 10.1038/ncomms5500
    1. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16:626–638. doi: 10.1038/nri.2016.90
    1. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mähler A, Balogh A, Markó L, et al. Salt‐responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551:585–589. doi: 10.1038/nature24628

Source: PubMed

3
Suscribir