Dose-dependent improvement of cardiac function in a swine model of acute myocardial infarction after intracoronary administration of allogeneic heart-derived cells

Veronica Crisostomo, Claudia Baez, José Luis Abad, Belén Sanchez, Virginia Alvarez, Rosalba Rosado, Guadalupe Gómez-Mauricio, Olivier Gheysens, Virginia Blanco-Blazquez, Rebeca Blazquez, José Luis Torán, Javier G Casado, Susana Aguilar, Stefan Janssens, Francisco M Sánchez-Margallo, Luis Rodriguez-Borlado, Antonio Bernad, Itziar Palacios, Veronica Crisostomo, Claudia Baez, José Luis Abad, Belén Sanchez, Virginia Alvarez, Rosalba Rosado, Guadalupe Gómez-Mauricio, Olivier Gheysens, Virginia Blanco-Blazquez, Rebeca Blazquez, José Luis Torán, Javier G Casado, Susana Aguilar, Stefan Janssens, Francisco M Sánchez-Margallo, Luis Rodriguez-Borlado, Antonio Bernad, Itziar Palacios

Abstract

Background: Allogeneic cardiac-derived progenitor cells (CPC) without immunosuppression could provide an effective ancillary therapy to improve cardiac function in reperfused myocardial infarction. We set out to perform a comprehensive preclinical feasibility and safety evaluation of porcine CPC (pCPC) in the infarcted porcine model, analyzing biodistribution and mid-term efficacy, as well as safety in healthy non-infarcted swine.

Methods: The expression profile of several pCPC isolates was compared with humans using both FACS and RT-qPCR. ELISA was used to compare the functional secretome. One week after infarction, female swine received an intracoronary (IC) infusion of vehicle (CON), 25 × 106 pCPC (25 M), or 50 × 106 pCPC (50 M). Animals were followed up for 10 weeks using serial cardiac magnetic resonance imaging to assess functional and structural remodeling (left ventricular ejection fraction (LVEF), systolic and diastolic volumes, and myocardial salvage index). Statistical comparisons were performed using Kruskal-Wallis and Mann-Whitney U tests. Biodistribution analysis of 18F-FDG-labeled pCPC was also performed 4 h after infarction in a different subset of animals.

Results: Phenotypic and functional characterization of pCPC revealed a gene expression profile comparable to their human counterparts as well as preliminary functional equivalence. Left ventricular functional and structural remodeling showed significantly increased LVEF 10 weeks after IC administration of 50 M pCPC, associated to the recovery of left ventricular volumes that returned to pre-infarction values (LVEF at 10 weeks was 42.1 ± 10.0% in CON, 46.5 ± 7.4% in 25 M, and 50.2 ± 4.9% in 50 M, p < 0.05). Infarct remodeling was also improved following pCPC infusion with a significantly higher myocardial salvage index in both treated groups (0.35 ± 0.20 in CON; 0.61 ± 0.20, p = 0.04, in 25 M; and 0.63 ± 0.17, p = 0.01, in 50 M). Biodistribution studies demonstrated cardiac tropism 4 h after IC administration, with substantial myocardial retention of pCPC-associated tracer activity (18% of labeled cells in the heart), and no obstruction of coronary flow, indicating their suitability as a cell therapy product.

Conclusions: IC administration of allogeneic pCPC at 1 week after acute myocardial infarction is feasible, safe, and associated with marked structural and functional benefit. The robust cardiac tropism of pCPC and the paracrine effects on left ventricle post-infarction remodeling established the preclinical bases for the CAREMI clinical trial (NCT02439398).

Keywords: Acute myocardial infarction; Allogeneic; CPC; Cardiac progenitor/stem cells; Intracoronary administration; Swine model.

Conflict of interest statement

JLA, BS, RR, VA, LRB, and IP were employees of Coretherapix (part of the Tigenix Group since July 2015). The remaining authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Large animal studies. Experimental workflow. a Flow chart illustrating the study design in large white swine. b AMI induction, treatment and sacrifice timetable, AMI indicates acute myocardial infarction. pCPC, cardiac stem/progenitor cells isolated from large white swine. LAD, left anterior descending coronary artery; CMR, cardiac magnetic resonance; PET, positron emission tomography
Fig. 2
Fig. 2
Phenotypic and functional characterization of pCPC. Comparison with hCPC. a Swine CPC characterization by flow cytometry. Expression of CD90, CD105, CD45, SLAI, SLAII, and CD86 is shown (empty histogram) and the number of positive cells is indicated (%). Gray-filled area represents isotype control. b RT-qPCR analysis of PECAM1 (CD31), GATA4, and GATA6 expression in the pCPC batches. Ct value for each sample/gene analyzed. There are no significant differences between the batches used. The average expression normalized to beta-2-microglobulin (β2M) is shown. Error bars represent SD (n = 3). c Comparative expression analysis of F11R and CACNG7 membrane makers, in both swine and human isolates; three independent isolates were compared for each cell type. The assay was performed three times, and data are expressed as mean ± SD; black lines indicate the p value summary (***< 0.002, **< 0.02, *< 0.05) (one-way analysis of variance followed by the Bonferroni multiple comparison test). d Porcine CPC (n = 4) secretome characterization by ELISA compared to human CPC (n = 3) secretome. The results are expressed as mean ± SD in pg/mL. e Migration assay. Conditioned medium (CM) of human cells (CPC1, CPC3, MSC, and HDF), were compared with CM obtained from swine samples (pCPC3 and pCPC5, pMSC and IPAM (pig alveolar macrophages) in their capacity to trigger the migration of MonMac-1 cells
Fig. 3
Fig. 3
Acute toxicity and biodistribution of pCPC in infarcted swine. a cTnI values measured over the course of the study. The slight elevation seen 24 h after vehicle/cell administration was not significantly different between groups. b Coronariogram obtained immediately after pCPC administration in a 50-M animal depicting complete opacification of the artery (TIMI 3). c Cytokine levels measured in plasma samples. Bars show the differences at 24 h after vehicle/cell administration referred to pre-administration values. d PET/CT images after 18F-FDG-labeled CPC administration. pCPC labeled with 18F-FDG were intracoronary administered in pigs 1 week after infarction. Cell distribution was analyzed by PET 4 h after cell infusion. d PET maximal intensity projection (MIP) images, showing the distribution of 18F-FDG activity over the entire body of the animal. e18F-FDG activity could also be clearly detected in the bladder (b), kidneys (k), and lungs (l). f Sagittal sections of PET/CT images only in the heart area; a diffuse uptake is shown
Fig. 4
Fig. 4
Evaluation of early edema 1 week after the treatment. Mean edema percentage before and 1 week after pCPC administration in animals receiving (a) vehicle (CON), (b) 25 × 106 pCPC (25 M), or (c) 50 × 106 pCPC (50 M). d Short-axis images of a mid-ventricular slice acquired pre-injection and f 1 week post-injection in a representative animal belonging to the 50 M group. p values obtained using non-parametric tests (Mann-Whitney U test)
Fig. 5
Fig. 5
Evolution of myocardial damage parameters after pCPC administration in infarcted swine. ac Changes over time in cardiac function parameters as measured with cardiac magnetic resonance (CMR) for the three experimental groups (CON, vehicle; 25 M, receiving 25 × 106 pCPC; 50 M, receiving 50 × 106 pCPC). Treatment effects (defined as the difference between pre-injection and 10-week values). a Changes in left ventricular ejection fraction (LVEF). b End-diastolic volume indexed to body surface area (EDVi). c End-systolic volume indexed to body surface area (ESVi). d Representative CMR and TTC-stained slices from the three studied groups. e Myocardial edema/area at risk (AAR) was calculated as a percentage of the left ventricle in a mid-heart slice using T2-weighted imaging. f Final infarct size (FIS) in an equivalent slice. g Myocardial salvage index (MSI) was then computed as AAR at mid-heart slice minus FIS in an equivalent slice divided by AAR (MSI = (AAR-FIS)/AAR). p values obtained using non-parametric tests (Kruskal-Wallis and Mann-Whitney U tests)
Fig. 6
Fig. 6
Histopathological studies. a Hematoxilin-eosin and Massons trichromic stains show typical histological appearance of the infarcts in control animals with increased collagen, while viable myocardial muscle bundles can be seen in treated animals. The bar represents 500 μm. b, c Distribution of vessels’ sizes, as determined at the infarct border
Fig. 7
Fig. 7
Feasibility and safety study in healthy swine. pCPC (35 × 106) were administered via the LAD in healthy swine (n = 7). a Changes to cTnI (μg/L) observed at 4 h (T1) and 24 h (T2) after injection. b DE-CMR obtained at 24 h and 7 days showed no evidence of infarction. Representative short-axis image obtained 24 h after injection. c Hematoxilin-eosin staining of pigs hearts 3 weeks after cell administration. No tissue alterations or inflammatory processes were found in any case

References

    1. Crisostomo V, Baez-Diaz C, Maestre J, Garcia-Lindo M, Sun F, Casado JG, et al. Delayed administration of allogeneic cardiac stem cell therapy for acute myocardial infarction could ameliorate adverse remodeling: experimental study in swine. J Transl Med. 2015;13(1):156. doi: 10.1186/s12967-015-0512-2.
    1. Bolli R, Tang XL, Sanganalmath SK, Rimoldi O, Mosna F, Abdel-Latif A, et al. Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy. Circulation. 2013;128(2):122–131. doi: 10.1161/CIRCULATIONAHA.112.001075.
    1. Kulandavelu S, Karantalis V, Fritsch J, Hatzistergos KE, Loescher VY, McCall F, et al. Pim1 kinase overexpression enhances ckit+ cardiac stem cell cardiac repair following myocardial infarction in swine. J Am Coll Cardiol. 2016;68(22):2454–2464. doi: 10.1016/j.jacc.2016.09.925.
    1. Malliaras K, Smith RR, Kanazawa H, Yee K, Seinfeld J, Tseliou E, et al. Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction. Circulation. 2013;128(25):2764–2775. doi: 10.1161/CIRCULATIONAHA.113.002863.
    1. Johnston PV, Sasano T, Mills K, Evers R, Lee ST, Smith RR, et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation. 2009;120(12):1075–1083. doi: 10.1161/CIRCULATIONAHA.108.816058.
    1. Malliaras K, Li TS, Luthringer D, Terrovitis J, Cheng K, Chakravarty T, et al. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation. 2012;125(1):100–112. doi: 10.1161/CIRCULATIONAHA.111.042598.
    1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart Disease and Stroke Statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492. doi: 10.1161/CIR.0000000000000558.
    1. Ishigami S, Ohtsuki S, Tarui S, Ousaka D, Eitoku T, Kondo M, et al. Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome: the TICAP prospective phase 1 controlled trial. Circ Res. 2015;116(4):653–664. doi: 10.1161/CIRCRESAHA.116.304671.
    1. Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore JB, Kajstura J, et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation. 2012;126(11 suppl 1):S54–S64. doi: 10.1161/CIRCULATIONAHA.112.092627.
    1. Mohsin S, Siddiqi S, Collins B, Sussman MA. Empowering adult stem cells for myocardial regeneration. Circ Res. 2011;109(12):1415–1428. doi: 10.1161/CIRCRESAHA.111.243071.
    1. Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A, et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res. 2010;106(5):971–980. doi: 10.1161/CIRCRESAHA.109.210682.
    1. Ellison-Hughes GM, Madeddu P. Exploring pericyte and cardiac stem cell secretome unveils new tactics for drug discovery. Pharmacol Ther. 2017;171:1–12. doi: 10.1016/j.pharmthera.2016.11.007.
    1. Barile L, Cervio E, Lionetti V, Milano G, Ciullo A, Biemmi V, et al. Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A. Cardiovasc Res. 2018;114(7):992–1005. doi: 10.1093/cvr/cvy055.
    1. Toran JL, Aguilar S, Lopez JA, Torroja C, Quintana JA, Santiago C, et al. CXCL6 is an important paracrine factor in the pro-angiogenic human cardiac progenitor-like cell secretome. Sci Rep. 2017;7(1):12490. doi: 10.1038/s41598-017-11976-6.
    1. Yee K, Malliaras K, Kanazawa H, Tseliou E, Cheng K, Luthringer DJ, et al. Allogeneic cardiospheres delivered via percutaneous transendocardial injection increase viable myocardium, decrease scar size, and attenuate cardiac dilatation in porcine ischemic cardiomyopathy. PLoS One. 2014;9(12):e113805. doi: 10.1371/journal.pone.0113805.
    1. Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev. 2016;96(3):1127–1168. doi: 10.1152/physrev.00019.2015.
    1. Karantalis V, Schulman IH, Balkan W, Hare JM. Allogeneic cell therapy: a new paradigm in therapeutics. Circ Res. 2015;116(1):12–15. doi: 10.1161/CIRCRESAHA.114.305495.
    1. Jansen of Lorkeers SJ. Eding JEC, Vesterinen HM, van der Spoel TIG, Sena ES, Duckers HJ, et al. Similar effect of autologous and allogeneic cell therapy for ischemic heart disease: systematic review and meta-analysis of large animal studies. Circ Res. 2015;116(1):80–86. doi: 10.1161/CIRCRESAHA.116.304872.
    1. Moscoso I, Tejados N, Barreiro O, Sepulveda P, Izarra A, Calvo E, et al. Podocalyxin-like protein 1 is a relevant marker for human c-kit(pos) cardiac stem cells. J Tissue Eng Regen Med. 2016;10(7):580–590. doi: 10.1002/term.1795.
    1. Lauden L, Boukouaci W, Borlado LR, Lopez IP, Sepulveda P, Tamouza R, et al. Allogenicity of human cardiac stem/progenitor cells orchestrated by programmed death ligand 1. Circ Res. 2013;112(3):451–464. doi: 10.1161/CIRCRESAHA.112.276501.
    1. Boukouaci W, Lauden L, Siewiera J, Dam N, Hocine HR, Khaznadar Z, et al. Natural killer cell crosstalk with allogeneic human cardiac-derived stem/progenitor cells controls persistence. Cardiovasc Res. 2014;104(2):290–302. doi: 10.1093/cvr/cvu208.
    1. Chakravarty T, Makkar RR, Ascheim DD, Traverse JH, Schatz R, DeMaria A, et al. ALLogeneic Heart STem Cells to Achieve Myocardial Regeneration (ALLSTAR) Trial: rationale and design. Cell Transplant. 2017;26(2):205–214. doi: 10.3727/096368916X692933.
    1. Sanz-Ruiz R, Casado Plasencia A, Borlado LR, Fernandez-Santos ME, Al-Daccak R, Claus P, et al. Rationale and design of a clinical trial to evaluate the safety and efficacy of intracoronary infusion of allogeneic human cardiac stem cells in patients with acute myocardial infarction and left ventricular dysfunction: the randomized multicenter double-blind controlled CAREMI trial (Cardiac Stem Cells in Patients With Acute Myocardial Infarction) Circ Res. 2017;121(1):71–80. doi: 10.1161/CIRCRESAHA.117.310651.
    1. Fernandez-Aviles F, Sanz-Ruiz R, Bogaert J, Casado Plasencia A, Gilaberte I, Belmans A, et al. Safety and efficacy of intracoronary infusion of allogeneic human cardiac stem cells in patients with ST-segment elevation myocardial infarction and left ventricular dysfunction. Circ Res. 2018;123(5):579–589. doi: 10.1161/CIRCRESAHA.118.312823.
    1. Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308(22):2369–2379. doi: 10.1001/jama.2012.25321.
    1. Florea V, Rieger AC, DiFede DL, El-Khorazaty J, Natsumeda M, Banerjee MN, et al. Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (the TRIDENT study) Circ Res. 2017;121(11):1279–1290. doi: 10.1161/CIRCRESAHA.117.311827.
    1. Tang XL, Rokosh G, Sanganalmath SK, Tokita Y, Keith MC, Shirk G, et al. Effects of intracoronary infusion of escalating doses of cardiac stem cells in rats with acute myocardial infarction. Circ Heart Fail. 2015;8(4):757–765. doi: 10.1161/CIRCHEARTFAILURE.115.002210.
    1. Kanazawa H, Tseliou E, Malliaras K, Yee K, Dawkins JF, De Couto G, et al. Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction. Circ Heart Fail. 2015;8(2):322–332. doi: 10.1161/CIRCHEARTFAILURE.114.001484.
    1. Torán JL, López JA, Gomes-Alves P, Aguilar S, Torroja C, Trevisan-Herraz M, et al. Definition of a cell surface signature for human cardiac progenitor cells after comprehensive comparative transcriptomic and proteomic characterization. Sci Rep. 2019;9(1):4647. doi: 10.1038/s41598-019-39571-x.
    1. Prathipati P, Nandi SS, Mishra PK. Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy. Stem Cell Rev. 2017;13(1):79–91. doi: 10.1007/s12015-016-9696-y.
    1. Blazquez R, Sanchez-Margallo FM, de la Rosa O, Dalemans W, Alvarez V, Tarazona R, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol. 2014;5:556. doi: 10.3389/fimmu.2014.00556.
    1. Stewart S, Winters GL, Fishbein MC, Tazelaar HD, Kobashigawa J, Abrams J, et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant. 2005;24(11):1710–1720. doi: 10.1016/j.healun.2005.03.019.
    1. Menasche P, Hagege AA, Scorsin M, Pouzet B, Desnos M, Duboc D, et al. Myoblast transplantation for heart failure. Lancet. 2001;357(9252):279–280. doi: 10.1016/S0140-6736(00)03617-5.
    1. Gyongyosi M, Haller PM, Blake DJ, Martin RE. Meta-analysis of cell therapy studies in heart failure and acute myocardial infarction. Circ Res. 2018;123(2):301–308. doi: 10.1161/CIRCRESAHA.117.311302.
    1. Gyongyosi M, Wojakowski W, Lemarchand P, Lunde K, Tendera M, Bartunek J, et al. Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res. 2015;116(8):1346–1360. doi: 10.1161/CIRCRESAHA.116.304346.
    1. Sepulveda JC, Tome M, Fernandez ME, Delgado M, Campisi J, Bernad A, et al. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells. 2014;32(7):1865–1877. doi: 10.1002/stem.1654.
    1. Li TS, Cheng K, Malliaras K, Matsushita N, Sun B, Marban L, et al. Expansion of human cardiac stem cells in physiological oxygen improves cell production efficiency and potency for myocardial repair. Cardiovasc Res. 2011;89(1):157–165. doi: 10.1093/cvr/cvq251.
    1. Wysoczynski M, Dassanayaka S, Zafir A, Ghafghazi S, Long BW, Noble C, et al. A new method to stabilize C-Kit expression in reparative cardiac mesenchymal cells. Front. Cell Dev. Biol. 2016;4:78. doi: 10.3389/fcell.2016.00078.
    1. Salabei JK, Lorkiewicz PK, Holden CR, Li Q, Hong KU, Bolli R, et al. Glutamine regulates cardiac progenitor cell metabolism and proliferation. Stem Cells. 2015;33(8):2613–2627. doi: 10.1002/stem.2047.
    1. Richardson JD, Bertaso AG, Psaltis PJ, Frost L, Carbone A, Paton S, et al. Impact of timing and dose of mesenchymal stromal cell therapy in a preclinical model of acute myocardial infarction. J Card Fail. 2013;19(5):342–353. doi: 10.1016/j.cardfail.2013.03.011.
    1. Fernandez-Jimenez R, Barreiro-Perez M, Martin-Garcia A, Sanchez-Gonzalez J, Aguero J, Galan-Arriola C, et al. Dynamic edematous response of the human heart to myocardial infarction: implications for assessing myocardial area at risk and salvage. Circulation. 2017;136(14):1288–1300. doi: 10.1161/CIRCULATIONAHA.116.025582.
    1. Fernandez-Jimenez R, Garcia-Prieto J, Sanchez-Gonzalez J, Aguero J, Lopez-Martin GJ, Galan-Arriola C, et al. Pathophysiology underlying the bimodal edema phenomenon after myocardial ischemia/reperfusion. J Am Coll Cardiol. 2015;66(7):816–828. doi: 10.1016/j.jacc.2015.06.023.
    1. van den Akker F, Feyen DA, van den Hoogen P, van Laake LW, van Eeuwijk EC, Hoefer I, et al. Intramyocardial stem cell injection: go(ne) with the flow. Eur Heart J. 2017;38(3):184–186.
    1. Collantes M, Pelacho B, Garcia-Velloso MJ, Gavira JJ, Abizanda G, Palacios I, et al. Non-invasive in vivo imaging of cardiac stem/progenitor cell biodistribution and retention after intracoronary and intramyocardial delivery in a swine model of chronic ischemia reperfusion injury. J Transl Med. 2017;15(1):56. doi: 10.1186/s12967-017-1157-0.
    1. Blazquez R, Sanchez-Margallo FM, Crisostomo V, Baez C, Maestre J, Garcia-Lindo M, et al. Intrapericardial administration of mesenchymal stem cells in a large animal model: a bio-distribution analysis. PLoS One. 2015;10(3):e0122377. doi: 10.1371/journal.pone.0122377.
    1. Blazquez R, Sanchez-Margallo FM, Crisostomo V, Baez C, Maestre J, Alvarez V, et al. Intrapericardial delivery of cardiosphere-derived cells: an immunological study in a clinically relevant large animal model. PLoS One. 2016;11(2):e0149001. doi: 10.1371/journal.pone.0149001.
    1. Engblom H, Heiberg E, Erlinge D, Jensen SE, Nordrehaug JE, Dubois-Rande JL, et al. Sample size in clinical cardioprotection trials using myocardial salvage index, infarct size, or biochemical markers as endpoint. J Am Heart Assoc. 2016;5(3):e002708. doi: 10.1161/JAHA.115.002708.
    1. Ishikawa K. Intracoronary injection of large stem cells: size matters. Circ Cardiovasc Interv. 2015;8(5):e002648.
    1. Mayfield AE, Kanda P, Nantsios A, Parent S, Mount S, Dixit S, et al. Interleukin-6 mediates post-infarct repair by cardiac explant-derived stem cells. Theranostics. 2017;7(19):4850–4861. doi: 10.7150/thno.19435.
    1. Zwetsloot PP, Vegh AM, Jansen of Lorkeers SJ. van Hout GP, Currie GL, Sena ES, et al. Cardiac stem cell treatment in myocardial infarction: a systematic review and meta-analysis of preclinical studies. Circ Res. 2016;118(8):1223–1232. doi: 10.1161/CIRCRESAHA.115.307676.
    1. Tompkins BA, Balkan W, Winkler J, Gyongyosi M, Goliasch G, Fernandez-Aviles F, et al. Preclinical studies of stem cell therapy for heart disease. Circ Res. 2018;122(7):1006–1020. doi: 10.1161/CIRCRESAHA.117.312486.
    1. Dall’Armellina E, Karia N, Lindsay AC, Karamitsos TD, Ferreira V, Robson MD, et al. Dynamic changes of edema and late gadolinium enhancement after acute myocardial infarction and their relationship to functional recovery and salvage index. Circ Cardiovasc Imaging. 2011;4(3):228–236. doi: 10.1161/CIRCIMAGING.111.963421.
    1. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904. doi: 10.1016/S0140-6736(12)60195-0.
    1. Hocine HR, Lauden L, Dam N, Boukouaci W, Charron D, Al-Daccak R. Allogeneic-driven benefit of human cardiac derived stem/progenitor cells. Hum Immunol. 2015;76(4):213. doi: 10.1016/j.humimm.2015.01.035.
    1. Henry TD, Kereiakes DJ, Kowalchuk GJ, Aguirre FV, Malliaras K, DeMaria AN, et al. 6-month results of ALLogeneic heart STem cells to achieve myocardial regeneration (ALLSTAR) trial: a randomized, placebo-controlled. Double-Blind Study Circulation. 2017;136(24):e448–ee67.
    1. Bolli R, Hare JM, March KL, Pepine CJ, Willerson JT, Perin EC, et al. Rationale and design of the CONCERT-HF trial (Combination of Mesenchymal and c-kit(+) Cardiac Stem Cells as Regenerative Therapy for Heart Failure) Circ Res. 2018;122(12):1703–1715. doi: 10.1161/CIRCRESAHA.118.312978.
    1. Chien KR, Frisén J, Fritsche-Danielson R, Melton DA, Murry CE, Weissman IL. Regenerating the field of cardiovascular cell therapy. Nat Biotechnol. 2019;37(3):232–237. doi: 10.1038/s41587-019-0042-1.
    1. The Lancet Editors Expression of concern: the SCIPIO trial. Lancet. 2014;383(9925):1279. doi: 10.1016/S0140-6736(14)60608-5.
    1. National Heart Lung and Blood Institute. CONCERT-HF Study, [Available from: Accesed 6 Mar 2019].
    1. Fernandez-Aviles F, Sanz-Ruiz R, Climent AM, Badimon L, Bolli R, Charron D, et al. Global position paper on cardiovascular regenerative medicine. Eur Heart J. 2017;38(33):2532–2546. doi: 10.1093/eurheartj/ehx248.
    1. Gallet R, Dawkins J, Valle J, Simsolo E, de Couto G, Middleton R, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J. 2017;38(3):201–211.

Source: PubMed

3
Suscribir