Phase II clinical study of valproic acid plus cisplatin and cetuximab in recurrent and/or metastatic squamous cell carcinoma of Head and Neck-V-CHANCE trial

Francesco Caponigro, Elena Di Gennaro, Franco Ionna, Francesco Longo, Corrado Aversa, Ettore Pavone, Maria Grazia Maglione, Massimiliano Di Marzo, Paolo Muto, Ernesta Cavalcanti, Antonella Petrillo, Fabio Sandomenico, Piera Maiolino, Roberta D'Aniello, Gerardo Botti, Rossella De Cecio, Nunzia Simona Losito, Stefania Scala, Annamaria Trotta, Andrea Ilaria Zotti, Francesca Bruzzese, Antonio Daponte, Ester Calogero, Massimo Montano, Monica Pontone, Gianfranco De Feo, Francesco Perri, Alfredo Budillon, Francesco Caponigro, Elena Di Gennaro, Franco Ionna, Francesco Longo, Corrado Aversa, Ettore Pavone, Maria Grazia Maglione, Massimiliano Di Marzo, Paolo Muto, Ernesta Cavalcanti, Antonella Petrillo, Fabio Sandomenico, Piera Maiolino, Roberta D'Aniello, Gerardo Botti, Rossella De Cecio, Nunzia Simona Losito, Stefania Scala, Annamaria Trotta, Andrea Ilaria Zotti, Francesca Bruzzese, Antonio Daponte, Ester Calogero, Massimo Montano, Monica Pontone, Gianfranco De Feo, Francesco Perri, Alfredo Budillon

Abstract

Background: Recurrent/metastatic squamous cell carcinoma of the head and neck (SCCHN) has a poor prognosis and the combination of cisplatin and cetuximab, with or without 5-fluorouracil, is the gold standard treatment in this stage. Thus, the concomitant use of novel compounds represents a critical strategy to improve treatment results. Histone deacetylase inhibitors (HDACi) enhance the activity of several anticancer drugs including cisplatin and anti-Epidermal Growth Factor Receptor (anti-EGFR) compounds. Preclinical studies in models have shown that vorinostat is able to down regulate Epidermal Growth Factor Receptor (EGFR) expression and to revert epithelial to mesenchimal transition (EMT). Due to its histone deacetylase (HDAC) inhibiting activity and its safe use as a chronic therapy for epileptic disorders, valproic acid (VPA) has been considered a good candidate for anticancer therapy. A reasonable option may be to employ the combination of cisplatin, cetuximab and VPA in recurrent/metastatic SCCHN taking advantage of the possible positive interaction between histone deacetylase inhibitors, cisplatin and/or anti-EGFR.

Method/design: V-CHANCE is a phase 2 clinical trial evaluating, in patients with recurrent/metastatic squamous cell carcinoma of the head and neck never treated with first-line chemotherapy, the concomitant standard administration of cisplatin (on day 1, every 3 weeks) and cetuximab (on day 1, weekly), in combination with oral VPA given daily from day -14 with a titration strategy in each patient (target serum level of 50-100 μg/ml). Primary end point is the objective response rate measured according to Response Evaluation Criteria in Solid Tumors (RECIST). Sample size, calculated according to Simon 2 stage minimax design will include 21 patients in the first stage with upper limit for rejection being 8 responses, and 39 patients in the second stage, with upper limit for rejection being 18 responses. Secondary endpoints are time to progression, duration of response, overall survival, safety. Objectives of the translational study are the evaluation on tumor samples of markers of treatment efficacy/resistance (i.e. γH2AX, p21/WAF, RAD51, XRCC1, EGFR, p-EGFR, Ki-67) and specific markers of VPA HDAC inhibitory activity (histones and proteins acetylation, Histone deacetylase isoforms) as well as valproate test, histones and proteins acetylation of peripheral blood mononuclear cell, tested on blood samples at baseline and at different time points during treatment.

Discussion: Overall, this study could provide a less toxic and more effective first-line chemotherapy regimen in patients with recurrent/metastatic squamous cell carcinoma of the head and neck by demonstrating the feasibility and efficacy of cisplatin/cetuximab plus valproic acid. Moreover, correlative studies could help to identify responder patients, and will add insights in the mechanism of the synergistic interaction between these agents.

Eudract number: 2014-001523-69 TRIAL REGISTRATION: ClinicalTrials.gov number, NCT02624128.

Keywords: Cetuximab; Cisplatin; Head and Neck cancer; Histone deacetylase inhibitor; Valproic acid.

Figures

Fig. 1
Fig. 1
Schematic timeline of study procedures. Note. History and physical examination, blood count, biochemistry will be repeated weekly during treatment

References

    1. Budillon A, Di Gennaro E, Bruzzese F, Rocco M, Manzo G, Caraglia M. Histone deacetylase inhibitors: a new wave of molecular targeted anticancer agents. Recent Pat Anticancer Drug Discov. 2007;2(2):119–34. doi: 10.2174/157489207780832450.
    1. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12(10):1247–52. doi: 10.1634/theoncologist.12-10-1247.
    1. Khot A, Dickinson M, Prince HM. Romidepsin for peripheral T-cell lymphoma. Expert Rev Hematol. 2013;6(4):351–9. doi: 10.1586/17474086.2013.814833.
    1. Di Gennaro E, Piro G, Chianese MI, Franco R, Di Cintio A, Moccia T, Luciano A, de Ruggiero I, Bruzzese F, Avallone A, et al. Vorinostat synergises with capecitabine through upregulation of thymidine phosphorylase. Br J Cancer. 2010;103(11):1680–91. doi: 10.1038/sj.bjc.6605969.
    1. Bruzzese F, Leone A, Rocco M, Carbone C, Piro G, Caraglia M, Di Gennaro E, Budillon A. HDAC inhibitor vorinostat enhances the antitumor effect of gefitinib in squamous cell carcinoma of head and neck by modulating ErbB receptor expression and reverting EMT. J Cell Physiol. 2011;226(9):2378–90. doi: 10.1002/jcp.22574.
    1. Bruzzese F, Rocco M, Castelli S, Di Gennaro E, Desideri A, Budillon A. Synergistic antitumor effect between vorinostat and topotecan in small cell lung cancer cells is mediated by generation of reactive oxygen species and DNA damage-induced apoptosis. Mol Cancer Ther. 2009;8(11):3075–87. doi: 10.1158/1535-7163.MCT-09-0254.
    1. Leone A, Roca MS, Ciardiello C, Terranova-Barberio M, Vitagliano C, Ciliberto G, Mancini R, Di Gennaro E, Bruzzese F, Budillon A. Vorinostat synergizes with EGFR inhibitors in NSCLC cells by increasing ROS via up-regulation of the major mitochondrial porin VDAC1 and modulation of the c-Myc-NRF2-KEAP1 pathway. Free Radic Biol Med. 2015;89:287–99. doi: 10.1016/j.freeradbiomed.2015.07.155.
    1. Diyabalanage HV, Granda ML, Hooker JM. Combination therapy: histone deacetylase inhibitors and platinum-based chemotherapeutics for cancer. Cancer Lett. 2013;329(1):1–8. doi: 10.1016/j.canlet.2012.09.018.
    1. Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev. 2008;34(3):206–22. doi: 10.1016/j.ctrv.2007.11.003.
    1. Chavez-Blanco A, Segura-Pacheco B, Perez-Cardenas E, Taja-Chayeb L, Cetina L, Candelaria M, Cantu D, Gonzalez-Fierro A, Garcia-Lopez P, Zambrano P, et al. Histone acetylation and histone deacetylase activity of magnesium valproate in tumor and peripheral blood of patients with cervical cancer. A phase I study. Mol Cancer. 2005;4(1):22. doi: 10.1186/1476-4598-4-22.
    1. Arce C, Perez-Plasencia C, Gonzalez-Fierro A, de la Cruz-Hernandez E, Revilla-Vazquez A, Chavez-Blanco A, Trejo-Becerril C, Perez-Cardenas E, Taja-Chayeb L, Bargallo E, et al. A proof-of-principle study of epigenetic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer. PLoS One. 2006;1:e98. doi: 10.1371/journal.pone.0000098.
    1. Munster P, Marchion D, Bicaku E, Lacevic M, Kim J, Centeno B, Daud A, Neuger A, Minton S, Sullivan D. Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC. Clin Cancer Res. 2009;15(7):2488–96. doi: 10.1158/1078-0432.CCR-08-1930.
    1. Vandermeers F, Hubert P, Delvenne P, Mascaux C, Grigoriu B, Burny A, Scherpereel A, Willems L. Valproate, in combination with pemetrexed and cisplatin, provides additional efficacy to the treatment of malignant mesothelioma. Clin Cancer Res. 2009;15(8):2818–28. doi: 10.1158/1078-0432.CCR-08-1579.
    1. Avallone A, Piccirillo MC, Delrio P, Pecori B, Di Gennaro E, Aloj L, Tatangelo F, D’Angelo V, Granata C, Cavalcanti E, et al. Phase 1/2 study of valproic acid and short-course radiotherapy plus capecitabine as preoperative treatment in low-moderate risk rectal cancer-V-shoRT-R3 (Valproic acid--short Radiotherapy--rectum 3rd trial) BMC Cancer. 2014;14:875. doi: 10.1186/1471-2407-14-875.
    1. Chateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol. 2010;2010:479364.
    1. Sandor V, Bakke S, Robey RW, Kang MH, Blagosklonny MV, Bender J, Brooks R, Piekarz RL, Tucker E, Figg WD, et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res. 2002;8(3):718–28.
    1. Byrd JC, Marcucci G, Parthun MR, Xiao JJ, Klisovic RB, Moran M, Lin TS, Liu S, Sklenar AR, Davis ME, et al. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood. 2005;105(3):959–67. doi: 10.1182/blood-2004-05-1693.
    1. Shah MH, Binkley P, Chan K, Xiao J, Arbogast D, Collamore M, Farra Y, Young D, Grever M. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res. 2006;12(13):3997–4003. doi: 10.1158/1078-0432.CCR-05-2689.
    1. Molife R, Fong P, Scurr M, Judson I, Kaye S, de Bono J. HDAC inhibitors and cardiac safety. Clin Cancer Res. 2007;13(3):1068. doi: 10.1158/1078-0432.CCR-06-1715.
    1. Munster P, Marchion D, Bicaku E, Schmitt M, Lee JH, DeConti R, Simon G, Fishman M, Minton S, Garrett C, et al. Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. J Clin Oncol. 2007;25(15):1979–85. doi: 10.1200/JCO.2006.08.6165.
    1. Hammerman PS, Hayes DN, Grandis JR. Therapeutic insights from genomic studies of head and neck squamous cell carcinomas. Cancer Discov. 2015;5(3):239–44.
    1. Burtness B, Bauman JE, Galloway T. Novel targets in HPV-negative head and neck cancer: overcoming resistance to EGFR inhibition. Lancet Oncol. 2013;14(8):e302–9. doi: 10.1016/S1470-2045(13)70085-8.
    1. Benhar M, Engelberg D, Levitzki A. Cisplatin-induced activation of the EGF receptor. Oncogene. 2002;21(57):8723–31. doi: 10.1038/sj.onc.1205980.
    1. Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, Erfan J, Zabolotnyy D, Kienzer HR, Cupissol D, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116–27. doi: 10.1056/NEJMoa0802656.
    1. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567–78. doi: 10.1056/NEJMoa053422.
    1. Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, Raben D, Baselga J, Spencer SA, Zhu J, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010;11(1):21–8. doi: 10.1016/S1470-2045(09)70311-0.
    1. Gavert N, Ben-Ze’ev A. Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol Med. 2008;14(5):199–209. doi: 10.1016/j.molmed.2008.03.004.
    1. Erjala K, Sundvall M, Junttila TT, Zhang N, Savisalo M, Mali P, Kulmala J, Pulkkinen J, Grenman R, Elenius K. Signaling via ErbB2 and ErbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin Cancer Res. 2006;12(13):4103–11. doi: 10.1158/1078-0432.CCR-05-2404.
    1. Bianchi L, Bruzzese F, Leone A, Gagliardi A, Puglia M, Di Gennaro E, Rocco M, Gimigliano A, Pucci B, Armini A, et al. Proteomic analysis identifies differentially expressed proteins after HDAC vorinostat and EGFR inhibitor gefitinib treatments in Hep-2 cancer cells. Proteomics. 2011;11(18):3725–42. doi: 10.1002/pmic.201100092.
    1. Theocharis S, Klijanienko J, Giaginis C, Rodriguez J, Jouffroy T, Girod A, Alexandrou P, Sastre-Garau X. Histone deacetylase-1 and −2 expression in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients survival. J Oral Pathol Med. 2011;40(9):706–14. doi: 10.1111/j.1600-0714.2011.01031.x.
    1. Yardley DA, Ismail-Khan RR, Melichar B, Lichinitser M, Munster PN, Klein PM, Cruickshank S, Miller KD, Lee MJ, Trepel JB. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J Clin Oncol. 2013;31(17):2128–35. doi: 10.1200/JCO.2012.43.7251.
    1. Adimoolam S, Sirisawad M, Chen J, Thiemann P, Ford JM, Buggy JJ. HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proc Natl Acad Sci U S A. 2007;104(49):19482–7. doi: 10.1073/pnas.0707828104.
    1. Burtness B, Goldwasser MA, Flood W, Mattar B, Forastiere AA, Eastern Cooperative Oncology G Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol. 2005;23(34):8646–54. doi: 10.1200/JCO.2005.02.4646.
    1. Barnea I, Haif S, Keshet R, Karaush V, Lev-Ari S, Khafif A, Shtabsky A, Yarden Y, Vexler A, Ben Yosef R. Targeting ErbB-1 and ErbB-4 in irradiated head and neck cancer: results of in vitro and in vivo studies. Head Neck. 2013;35(3):399–407. doi: 10.1002/hed.22967.
    1. Seiwert TY, Jagadeeswaran R, Faoro L, Janamanchi V, Nallasura V, El Dinali M, Yala S, Kanteti R, Cohen EE, Lingen MW, et al. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 2009;69(7):3021–31. doi: 10.1158/0008-5472.CAN-08-2881.
    1. Akervall J, Guo X, Qian CN, Schoumans J, Leeser B, Kort E, Cole A, Resau J, Bradford C, Carey T, et al. Genetic and expression profiles of squamous cell carcinoma of the head and neck correlate with cisplatin sensitivity and resistance in cell lines and patients. Clin Cancer Res. 2004;10(24):8204–13. doi: 10.1158/1078-0432.CCR-04-0722.
    1. Sun S, Wang Z. Head neck squamous cell carcinoma c-Met(+) cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis. Int J Cancer. 2011;129(10):2337–48. doi: 10.1002/ijc.25927.
    1. Krumbach R, Schuler J, Hofmann M, Giesemann T, Fiebig HH, Beckers T. Primary resistance to cetuximab in a panel of patient-derived tumour xenograft models: activation of MET as one mechanism for drug resistance. Eur J Cancer. 2011;47(8):1231–43. doi: 10.1016/j.ejca.2010.12.019.
    1. Lopez-Albaitero A, Lee SC, Morgan S, Grandis JR, Gooding WE, Ferrone S, Ferris RL. Role of polymorphic Fc gamma receptor IIIa and EGFR expression level in cetuximab mediated, NK cell dependent in vitro cytotoxicity of head and neck squamous cell carcinoma cells. Cancer Immunol. Immunother. 2009;58(11):1853–64. doi: 10.1007/s00262-009-0697-4.
    1. Cohen EE, Lingen MW, Vokes EE. The expanding role of systemic therapy in head and neck cancer. J Clin Oncol. 2004;22(9):1743–52. doi: 10.1200/JCO.2004.06.147.
    1. Iannello A, Ahmad A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev. 2005;24(4):487–99. doi: 10.1007/s10555-005-6192-2.
    1. Calemma R, Ottaiano A, Trotta AM, Nasti G, Romano C, Napolitano M, Galati D, Borrelli P, Zanotta S, Cassata A, et al. Fc gamma receptor IIIa polymorphisms in advanced colorectal cancer patients correlated with response to anti-EGFR antibodies and clinical outcome. J Transl Med. 2012;10:232. doi: 10.1186/1479-5876-10-232.
    1. Morganroth J, Shah RR, Scott JW. Evaluation and management of cardiac safety using the electrocardiogram in oncology clinical trials: focus on cardiac repolarization (QTc interval) Clin Pharmacol Ther. 2010;87(2):166–74. doi: 10.1038/clpt.2009.214.
    1. Ederhy S, Izzedine H, Massard C, Dufaitre G, Spano JP, Milano G, Meuleman C, Besse B, Boccara F, Kahyat D, et al. Cardiac side effects of molecular targeted therapies: towards a better dialogue between oncologists and cardiologists. Crit Rev Oncol Hematol. 2011;80(3):369–79. doi: 10.1016/j.critrevonc.2011.01.009.

Source: PubMed

3
Suscribir