Robust association between vascular habitats and patient prognosis in glioblastoma: An international multicenter study

María Del Mar Álvarez-Torres, Javier Juan-Albarracín, Elies Fuster-Garcia, Fuensanta Bellvís-Bataller, David Lorente, Gaspar Reynés, Jaime Font de Mora, Fernando Aparici-Robles, Carlos Botella, Jose Muñoz-Langa, Raquel Faubel, Sabina Asensio-Cuesta, Germán A García-Ferrando, Eduard Chelebian, Cristina Auger, Jose Pineda, Alex Rovira, Laura Oleaga, Enrique Mollà-Olmos, Antonio J Revert, Luaba Tshibanda, Girolamo Crisi, Kyrre E Emblem, Didier Martin, Paulina Due-Tønnessen, Torstein R Meling, Silvano Filice, Carlos Sáez, Juan M García-Gómez, María Del Mar Álvarez-Torres, Javier Juan-Albarracín, Elies Fuster-Garcia, Fuensanta Bellvís-Bataller, David Lorente, Gaspar Reynés, Jaime Font de Mora, Fernando Aparici-Robles, Carlos Botella, Jose Muñoz-Langa, Raquel Faubel, Sabina Asensio-Cuesta, Germán A García-Ferrando, Eduard Chelebian, Cristina Auger, Jose Pineda, Alex Rovira, Laura Oleaga, Enrique Mollà-Olmos, Antonio J Revert, Luaba Tshibanda, Girolamo Crisi, Kyrre E Emblem, Didier Martin, Paulina Due-Tønnessen, Torstein R Meling, Silvano Filice, Carlos Sáez, Juan M García-Gómez

Abstract

Background: Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by a heterogeneous and abnormal vascularity. Subtypes of vascular habitats within the tumor and edema can be distinguished: high angiogenic tumor (HAT), low angiogenic tumor (LAT), infiltrated peripheral edema (IPE), and vasogenic peripheral edema (VPE).

Purpose: To validate the association between hemodynamic markers from vascular habitats and overall survival (OS) in glioblastoma patients, considering the intercenter variability of acquisition protocols.

Study type: Multicenter retrospective study.

Population: In all, 184 glioblastoma patients from seven European centers participating in the NCT03439332 clinical study.

Field strength/sequence: 1.5T (for 54 patients) or 3.0T (for 130 patients). Pregadolinium and postgadolinium-based contrast agent-enhanced T1 -weighted MRI, T2 - and FLAIR T2 -weighted, and dynamic susceptibility contrast (DSC) T2 * perfusion.

Assessment: We analyzed preoperative MRIs to establish the association between the maximum relative cerebral blood volume (rCBVmax ) at each habitat with OS. Moreover, the stratification capabilities of the markers to divide patients into "vascular" groups were tested. The variability in the markers between individual centers was also assessed.

Statistical tests: Uniparametric Cox regression; Kaplan-Meier test; Mann-Whitney test.

Results: The rCBVmax derived from the HAT, LAT, and IPE habitats were significantly associated with patient OS (P < 0.05; hazard ratio [HR]: 1.05, 1.11, 1.28, respectively). Moreover, these markers can stratify patients into "moderate-" and "high-vascular" groups (P < 0.05). The Mann-Whitney test did not find significant differences among most of the centers in markers (HAT: P = 0.02-0.685; LAT: P = 0.010-0.769; IPE: P = 0.093-0.939; VPE: P = 0.016-1.000).

Data conclusion: The rCBVmax calculated in HAT, LAT, and IPE habitats have been validated as clinically relevant prognostic biomarkers for glioblastoma patients in the pretreatment stage. This study demonstrates the robustness of the hemodynamic tissue signature (HTS) habitats to assess the GBM vascular heterogeneity and their association with patient prognosis independently of intercenter variability.

Level of evidence: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:1478-1486.

Keywords: glioblastoma; multicenter study; overall survival; perfusion DSC; vascularity.

© 2019 International Society for Magnetic Resonance in Medicine.

References

    1. Louis N, Perry A, Reifenberge RG, et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol 2016;131:808.
    1. Gately L, McLachlan SA, Dowling A, et al. Life beyond a diagnosis of glioblastoma: A systematic review of the literature. J Cancer Surviv 2017;11:447-449.
    1. Bae S, Choi YS, Chang JH, et al. Radiomic MRI phenotyping of glioblastoma: Improving survival prediction. Radiology 2018;289:797-798.
    1. Akbari H, Macyszyn L, Da X, et al. Pattern analysis of dynamic susceptibility contrast-enhanced MR imaging demonstrates peritumoral tissue heterogeneity. Radiology 2014;273:503.
    1. Soeda A, Hara A, Kunisada T, et al. The evidence of glioblastoma heterogeneity. Sci Rep 2015;5:1-6.
    1. Weis SM, Cheresh DA. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med 2011;17:1359-1365.
    1. De Palma M, Biziato D, Petrova TV, et al. Microenviromental regulation of tumour angiogenesis. Nat Rev Cancer 2017;17:13.
    1. Jain R, Poisson LM, Gutman D, et al. Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: Focus on the non-enhancing component of the tumor. Radiology 2014;272:484-493.
    1. Jensen RL, Mumert ML, Gillespie DL, Kinney AY, Schabel MC, Salzman KL. Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome. Neuro Oncol 2014;16:280-291.
    1. Fuster-Garcia E, García-Gómez JM, et al. Imaging biomarkers. In: Martí-Bonmatí L, Alberich-Bayarri A, eds. Development and clinical integration. Cham, Switzerland: Springer International Publishing. 2017;181-194.
    1. Demerath T, Simon-Gabriel CP, Kellner E, et al. Mesoscopic imaging of glioblastomas: Are diffusion, perfusion and spectroscopic measures influenced by the radiogenetic phenotype. Neuroradiol J 2017;30:36-47.
    1. Jena A, Taneja S, Gambhir A, et al. Glioma recurrence versus radiation necrosis: Single-session multiparametric approach using simultaneous O-(2-18f-Fluoroethyl)-L-tyrosine PET/MRI. Clin Nucl Med 2016;41;228-236.
    1. Price SJ, Young Adam MH, Scotton William J, et al. Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas. J Magn Reson Imaging 2016;43;487-494.
    1. Chang Y-CC, Ackerstaff E, Tschudi Y, et al. Delineation of tumor habitats based on dynamic contrast enhanced MRI. Sci Rep 2017;7:9746.
    1. Cui Y, Tha KK, Terasaka S, et al. Prognostic imaging biomarkers in glioblastoma: Development and independent validation on the basis of multi-region and quantitative analysis of MR images. Radiology 2016;278:546-553.
    1. Juan-Albarracín J, Fuster-García E, Pérez-Girbés, et al. Glioblastoma: Vascular habitats detected at preoperative dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging predict survival. Radiology 2018;287:944-954.
    1. Fuster-García E, Juan-Albarracín J, García-Ferrando GA, et al. Improving the estimation of prognosis for glioblastoma patients by MR based hemodynamic tissue signatures. NMR Biomed 2018:25-32.
    1. Abramson RG, Burton KR, Yu JJ, et al. Methods and challenges in quantitative imaging biomarker development. Acad Radiol 2015;22:26-27.
    1. O'Connor JPB, Aboagye EO, Adams JE, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 2016;14:174-177.
    1. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352:987-996.
    1. Wetzel SG, Cha S, Johnson G, et al. Relative cerebral blood volume measurements in intra cranial mass lesions: Interobserver and intra observer reproducibility study. Radiology 2002;224:798-802.
    1. Schnack HG, van Haren NEM, Hulshof Pol HE, et al. Reliability of brain volumes from multicenter MRI acquisition: A calibration study. Hum Brain Mapp 2004;22:312-320.
    1. De Guio F, Jouvent E, Biessels GJ, et al. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. J Cereb Blood Flow Metab 2016;36:1319-1337.
    1. Liu TT, Achrol AS, Mitchell LA, et al. Magnetic resonance perfusion image features uncover an angiogenic subgroup of glioblastoma patients with poor survival and better response to antiangiogenic treatment. Neuro Oncol 2017;19:1000-1002.
    1. Hirai T, Murakami R, Nakamura H, et al. Prognostic value of perfusion MR imaging of high-grade astrocytomas: Long-term follow-up study. Am J Neuroradiol 2008;29:1506-1509.
    1. Sawlani RN, Raizer J, Horowitz SW, et al. Glioblastoma: A method for predicting response to angiogenic chemotherapy by using MR perfusion imaging - Pilot study. Radiology 2010;255:622-628.
    1. Hambardzumyan D, Bergers G. Glioblastoma: Defining tumor niches. Trends Cancer 2015;1:252-265.
    1. Artzi M, Bokstein F, Blumenthal DT, et al. Differentiation between vasogenic-edema versus tumor-infiltrative area in patients with glioblastoma during bevacizumab therapy: A longitudinal MRI study. Eur J Radiol 2014;83:1250-1256.
    1. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17:99-109.

Source: PubMed

3
Suscribir