A Novel Noninvasive Method for Measuring Fatigability of the Quadriceps Muscle in Noncooperating Healthy Subjects

Jesper B Poulsen, Martin H Rose, Kirsten Møller, Anders Perner, Bente R Jensen, Jesper B Poulsen, Martin H Rose, Kirsten Møller, Anders Perner, Bente R Jensen

Abstract

Background: Critical illness is associated with muscle weakness leading to long-term functional limitations.

Objectives: To assess the reliability of a novel method for evaluating fatigability of the quadriceps muscle in noncooperating healthy subjects.

Methods: On two occasions, separated by seven days, nonvoluntary isometric contractions (twitch and tetanic) of the quadriceps femoris muscle evoked by transcutaneous electrical muscle stimulation were recorded in twelve healthy adults. For tetanic contractions, the Fatigue Index (ratio of peak torque values) and the slope of the regression line of peak torque values were primary outcome measures. For twitch contractions, maximum peak torque and rise time were calculated. Relative (intraclass correlation, ICC3.1) and absolute (standard error of measurement, SEM) reliability were assessed and minimum detectable change was calculated using a 95% confidence interval (MDC95%).

Results: The Fatigue Index (ICC3.1, 0.84; MDC95%, 0.12) and the slope of the regression line (ICC3.1, 0.99; MDC95%, 0.03) showed substantial relative and absolute reliability during the first 15 and 30 contractions, respectively.

Conclusion: This method for assessing fatigability of the quadriceps muscle produces reliable results in healthy subjects and may provide valuable data on quantitative changes in muscle working capacity and treatment effects in patients who are incapable of producing voluntary muscle contractions.

Trial registration: ClinicalTrials.gov NCT01345461.

Figures

Figure 1
Figure 1
Schematic diagram of the model. (a) Electrical muscle stimulation circuit: (1) placement of self-adhesive carbon electrode pads; (2) constant current high voltage muscle stimulators; (3) train generator. (b) Force measurement circuit: (4) rigid ankle and contra strap; (5) strain gauge; (6) bridge circuit/amplifier; (7) analog-digital converter; (8) computer.
Figure 2
Figure 2
A recording of typical subject's force output during the fatigue test. An initial single-twitch series was followed by 40 tetanic contractions, after which a final single-twitch series was done. STW: single twitch; TC: tetanic contractions; Nm: newton meters.

References

    1. Herring A. A., Ginde A. A., Fahimi J., et al. Increasing critical care admissions from U.S. emergency departments, 2001–2009. Critical Care Medicine. 2013;41(5):1197–1204. doi: 10.1097/ccm.0b013e31827c086f.
    1. Gaieski D. F., Edwards J. M., Kallan M. J., Carr B. G. Benchmarking the incidence and mortality of severe sepsis in the united states. Critical Care Medicine. 2013;41(5):1167–1174. doi: 10.1097/CCM.0b013e31827c09f8.
    1. Moran J. L., Bristow P., Solomon P. J., George C., Hart G. K. Mortality and length-of-stay outcomes, 1993–2003, in the binational Australian and New Zealand intensive care adult patient database. Critical Care Medicine. 2008;36(1):46–61. doi: 10.1097/01.ccm.0000295313.08084.58.
    1. De Jonghe B., Lacherade J.-C., Sharshar T., Outin H. Intensive care unit-acquired weakness: risk factors and prevention. Critical Care Medicine. 2009;37(10):S309–S315. doi: 10.1097/ccm.0b013e3181b6e64c.
    1. Herridge M. S., Tansey C. M., Matté A., et al. Functional disability 5 years after acute respiratory distress syndrome. The New England Journal of Medicine. 2011;364(14):1293–1304. doi: 10.1056/nejmoa1011802.
    1. Poulsen J. B., Moller K., Kehlet H., Perner A. Long-term physical outcome in patients with septic shock. Acta Anaesthesiologica Scandinavica. 2009;53(6):724–730. doi: 10.1111/j.1399-6576.2009.01921.x.
    1. Puthucheary Z. A., Rawal J., McPhail M., et al. Acute skeletal muscle wasting in critical illness. Journal of the American Medical Association. 2013;310(15):1591–1600. doi: 10.1001/jama.2013.278481.
    1. Gruther W., Benesch T., Zorn C., et al. Muscle wasting in intensive care patients: ultrasound observation of the M. quadriceps femoris muscle layer. Journal of Rehabilitation Medicine. 2008;40(3):185–189. doi: 10.2340/16501977-0139.
    1. Plank L. D., Connolly A. B., Hill G. L. Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis. Annals of Surgery. 1998;228(2):146–158. doi: 10.1097/00000658-199808000-00002.
    1. Poulsen J. B., Møller K., Jensen C. V., Weisdorf S., Kehlet H., Perner A. Effect of transcutaneous electrical muscle stimulation on muscle volume in patients with septic shock. Critical Care Medicine. 2011;39(3):456–461. doi: 10.1097/ccm.0b013e318205c7bc.
    1. Parry S. M., Granger C. L., Berney S., et al. Assessment of impairment and activity limitations in the critically ill: a systematic review of measurement instruments and their clinimetric properties. Intensive Care Medicine. 2015;41:744–762. doi: 10.1007/s00134-015-3672-x.
    1. Hodgson C., Bellomo R., Berney S., et al. Early mobilization and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre, prospective cohort study. Critical Care. 2015;26:19–81. doi: 10.1186/s13054-015-0765-4.
    1. Kress J. P., Hall J. P. ICU-acquired weakness and recovery from critical illness. The New England Journal of Medicine. 2014;370(17):1626–1635. doi: 10.1056/NEJMra1209390.
    1. Baudry S., Duchateau J. Postactivation potentiation in human muscle is not related to the type of maximal conditioning contraction. Muscle and Nerve. 2004;30(3):328–336. doi: 10.1002/mus.20101.
    1. Botter A., Oprandi G., Lanfranco F., Allasia S., Maffiuletti N. A., Minetto M. A. Atlas of the muscle motor points for the lower limb: implications for electrical stimulation procedures and electrode positioning. European Journal of Applied Physiology. 2011;111(10):2461–2471. doi: 10.1007/s00421-011-2093-y.
    1. Gondin J., Guette M., Ballay Y., Martin A. Neural and muscular changes to detraining after electrostimulation training. European Journal of Applied Physiology. 2006;97(2):165–173. doi: 10.1007/s00421-006-0159-z.
    1. Shrout P. E. Measurement reliability and agreement in psychiatry. Statistical Methods in Medical Research. 1998;7(3):301–317. doi: 10.1191/096228098672090967.
    1. Man W. D.-C., Hopkinson N. S., Harraf F., Nikoletou D., Polkey M. I., Moxham J. Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease. Thorax. 2005;60(9):718–722. doi: 10.1136/thx.2005.040709.
    1. Bassey E. J., Fiatarone M. A., O'Neill E. F., Kelly M., Evans W. J., Lipsitz L. A. Leg extensor power and functional performance in very old men and women. Clinical Science. 1992;82(3):321–327.
    1. Visser M., Kritchevsky S. B., Goodpaster B. H., et al. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the Health, Aging and Body Composition study. Journal of the American Geriatrics Society. 2002;50(5):897–904. doi: 10.1046/j.1532-5415.2002.50217.x.
    1. Newman A. B., Kupelian V., Visser M., et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. Journals of Gerontology A. Biological Sciences and Medical Sciences. 2006;61(1):72–77. doi: 10.1093/gerona/61.1.72.
    1. Man W. D.-C., Soliman M. G. G., Nikoletou D., et al. Non-volitional assessment of skeletal muscle strength in patients with chronic obstructive pulmonary disease. Thorax. 2003;58(8):665–669. doi: 10.1136/thorax.58.8.665.
    1. Poulsen J. B., Rose M. H., Jensen B. R., Møller K., Perner A. Biomechanical and nonfunctional assessment of physical capacity in male ICU survivors. Critical Care Medicine. 2013;41(1):93–101. doi: 10.1097/CCM.0b013e31826a3f9e.
    1. Segers J., Hermans G., Bruyninckx F., Meyfroidt G., Langer D., Gosselink R. Feasibility of neuromuscular electrical stimulation in critically ill patients. Journal of Critical Care. 2014;29(6):1082–1088. doi: 10.1016/j.jcrc.2014.06.024.
    1. Maffiuletti N. A., Morelli A., Martin A., et al. Effect of gender and obesity on electrical current thresholds. Muscle and Nerve. 2011;44(2):202–207. doi: 10.1002/mus.22050.
    1. Petrofsky J., Prowse M., Bain M., et al. Estimation of the distribution of intramuscular current during electrical stimulation of the quadriceps muscle. European Journal of Applied Physiology. 2008;103(3):265–273. doi: 10.1007/s00421-008-0700-3.
    1. Haeseler G., Foadi N., Wiegand E., et al. Endotoxin reduces availability of voltage-gated human skeletal muscle sodium channels at depolarized membrane potentials. Critical Care Medicine. 2008;36(4):1239–1247. doi: 10.1097/CCM.0b013e31816a02cf.
    1. Supinski G. S., Callahan L. A. Free radical-mediated skeletal muscle dysfunction in inflammatory conditions. Journal of Applied Physiology. 2007;102(5):2056–2063. doi: 10.1152/japplphysiol.01138.2006.
    1. Petrofsky J. S., Suh H. J., Gunda S., Prowse M., Batt J. Interrelationships between body fat and skin blood flow and the current required for electrical stimulation of human muscle. Medical Engineering and Physics. 2008;30(7):931–936. doi: 10.1016/j.medengphy.2007.12.007.
    1. Gobbo M., Gaffurini P., Bissolotti L., Esposito F., Orizio C. Transcutaneous neuromuscular electrical stimulation: influence of electrode positioning and stimulus amplitude settings on muscle response. European Journal of Applied Physiology. 2011;111(10):2451–2459. doi: 10.1007/s00421-011-2047-4.
    1. McDonnell M. K., Delitto A., Sinacore D. R., Rose S. J. Electrically elicited fatigue test of the quadriceps femoris muscle. Description and reliability. Physical Therapy. 1987;67(6):941–945.
    1. Snyder-Mackler L., Binder-MacLeod S. A., Williams P. R. Fatigability of human quadriceps femoris muscle following anterior cruciate ligament reconstruction. Medicine and Science in Sports and Exercise. 1993;25(7):783–789. doi: 10.1249/00005768-199307000-00005.
    1. Eikermann M., Koch G., Gerwig M., et al. Muscle force and fatigue in patients with sepsis and multiorgan failure. Intensive Care Medicine. 2006;32(2):251–259. doi: 10.1007/s00134-005-0029-x.
    1. Janssen I., Heymsfield S. B., Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. Journal of the American Geriatrics Society. 2002;50(5):889–896. doi: 10.1046/j.1532-5415.2002.50216.x.
    1. Burke R. E., Levine D. N., Tsairis P., Zajac F. E. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. The Journal of Physiology. 1973;234(3):733–748.
    1. Bigland-Ritchie B., Furbush F., Woods J. J. Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. Journal of Applied Physiology. 1986;61(2):421–429.
    1. Dolmage T., Cafarelli E. Rate of fatigue during repeated submaximal contractions of human quadriceps muscle. Canadian Journal of Physiology and Pharmacology. 1991;69(10):1410–1415. doi: 10.1139/y91-211.
    1. Bickel C. S., Gregory C. M., Dean J. C. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. European Journal of Applied Physiology. 2011;111(10):2399–2407. doi: 10.1007/s00421-011-2128-4.
    1. Parry S. M., Berney S., Granger C. L., Koopman R., El-Ansary D., Denehy L. Electrical muscle stimulation in the intensive care setting: a systematic review. Critical Care Medicine. 2013;41(10):2406–2418. doi: 10.1097/ccm.0b013e3182923642.
    1. Maffiuletti N. A., Roig M., Karatzanos E., Nanas S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: a systematic review. BMC Medicine. 2013;11(1, article 137) doi: 10.1186/1741-7015-11-137.

Source: PubMed

3
Suscribir