Morpho-Functional Evaluation of Full-Thickness Macular Holes by the Integration of Optical Coherence Tomography Angiography and Microperimetry

Daniela Bacherini, Maria Cristina Savastano, Francesco Dragotto, Lucia Finocchio, Chiara Lenzetti, Alice Bitossi, Ruggero Tartaro, Fabrizio Giansanti, Francesco Barca, Alfonso Savastano, Tomaso Caporossi, Lorenzo Vannozzi, Andrea Sodi, Marino De Luca, Francesco Faraldi, Gianni Virgili, Stanislao Rizzo, Daniela Bacherini, Maria Cristina Savastano, Francesco Dragotto, Lucia Finocchio, Chiara Lenzetti, Alice Bitossi, Ruggero Tartaro, Fabrizio Giansanti, Francesco Barca, Alfonso Savastano, Tomaso Caporossi, Lorenzo Vannozzi, Andrea Sodi, Marino De Luca, Francesco Faraldi, Gianni Virgili, Stanislao Rizzo

Abstract

(1) Objective: To use optical coherence tomography angiography (OCTA) and microperimetry (MP) to evaluate the correlation between retinal structure and function in patients with idiopathic, full-thickness macular holes (FTMHs) (2) Methods: This prospective, observational study included 11 eyes of 10 patients with FTMHs evaluated before surgery using OCTA and MP. MP sensitivity maps were superimposed and registered on slabs corresponding to superficial capillary plexus (SCP) and deep capillary plexus (DCP) on OCTA, and on the outer plexiform layer (OPL) and the Henle fiber layer (HFL) complex in en face OCT. On these maps, mean retinal sensitivity was calculated at 2° and 4°, all centered on the FTMH. Cystic cavity extension was assessed on the slab corresponding to the OPL + HFL complex in en face OCT and DCP in OCTA using the Image J software (Version 1.49v; National Institutes of Health, Bethesda, MD, USA); (3) Results: Absolute scotomas were observed corresponding to the FTMH. Additionally, rings of relative scotoma in the perilesional area were detected and correlated to the cystic spaces on en face OCT and OCTA. There was a significant correlation between reduced retinal sensitivity at 2° and 4° diameters around the FTMH and the extension of cystic areas (p < 0.01). There was a significant correlation between the extension of cystic cavities and BCVA (p < 0.01). (4) Conclusions: Morpho-functional analysis of FTMH using OCTA and MP, and the correlation between vascular abnormalities and impaired retinal sensitivity, may provide new, useful information. This integrated evaluation of FTMH may be useful to determine the function-structure correlation before and after vitreoretinal surgery, in order to gain a better understanding of the functional consequences induced by the morphological alterations, assessing outcomes in a more objective way, and potentially adding new surgical prognostic factors.

Keywords: OCT Angiography; full-thickness macular hole; microperimetry.

Conflict of interest statement

References

Figures

Figure 1
Figure 1
An eye with full thickness macular hole analyzed using en face optical coherence tomography (OCT) (A) and OCT angiography (B). In the lower part the corresponding segmentation is visible.
Figure 2
Figure 2
The ETDRS-based vessel density [%], with division of the macular area into the nine ETDRS subfields (on the left). On the right, a scheme showing the rings centered around the fovea. The fovea is defined as the area within the central 1-mm ring of the Early Treatment Diabetic Retinopathy Study (ETDRS) grid. The surrounding ring with an inner diameter of 1 mm and an outer diameter of 3 mm is considered as the inner ring. The ring with an inner diameter of 3 mm and an outer diameter of 6 mm is considered as the outer ring. The whole ring includes the fovea and the inner and outer rings.
Figure 3
Figure 3
(A) The B-scan OCT shows a full-thickness macular hole. (B) The central absolute scotoma corresponding to the FTMH and rings of relative scotoma extending in the perilesional area are shown in microperimetry map. These relative scotomas correlate with the cystic alterations detected by OCT angiography at the level of deep capillary plexus (B) and by en face OCT in the outer plexiform layer (OPL) and the Henle fiber layer (HFL) complex (C).
Figure 4
Figure 4
(A) 1. En face scan of the OPL + HFL complex of a large MH. 2. The extension of cystic cavities measured on the slab corresponding to OPL + HFL complex assessed by OCT en face, using the Image J software. In the lower part the corresponding cavity area in mm2 and the Best Corrected visual Acuity in LogMAR are indicated. 3. Overlay of the microperimetry (2° retinal sensitivity) on the slabs corresponding to the deep capillary plexus on OCTA. (B) 1. En face OCT (OPL + HFL complex) of a smaller macular hole. 2. The extension of cystic cavities measured on the slab corresponding to OPL + HFL complex assessed by OCT en face, using Image J software. 3. Overlay of the microperimetry (2° retinal sensitivity) on the slabs corresponding to the deep capillary plexus on OCTA.
Figure 5
Figure 5
Scatterplot shows the statistically significant correlation (p = 0.01; R2 = 0.53) between macular hole diameter (μm) and microperimetry 2 degree sensitivity (dB).
Figure 6
Figure 6
Scatterplot shows the statistically significant correlation (p = 0.0027; R2 = 0.65) between cavity areas in OPL + HFL complex (mm2) and microperimetry 2 degree sensitivity (dB).
Figure 7
Figure 7
Scatterplot shows the statistically significant correlation (p = 0.0148; R2 = 0.50) between cavity areas on OPL + HFL complex (mm2) and microperimetry 4 degree sensitivity (dB).
Figure 8
Figure 8
(A) Area of peak of flow in the choroidal slab (also named “choriocapillary transparency”) due to visibility of choroidal vessels caused by lack of neuroepithelium. (B) Scatterplot shows the statistically significant correlation (p = 0.04, R2 = 0.36) between the area of peak of flow in the choroidal slab (mm2) and microperimetry 2 degree sensitivity (DB).

References

    1. Duker J.S., Kaiser P.K., Binder S., De Smet M.D., Gaudric A., Reichel E., Sadda S.R., Sebag J., Spaide R.F., Stalmans P. The International Vitreomacular Traction Study Group Classification of Vitreomacular Adhesion, Traction, and Macular Hole. Ophthalmology. 2013;120:2611–2619. doi: 10.1016/j.ophtha.2013.07.042.
    1. Ullrich S., Haritoglou C., Gass C., Schaumberger M., Ulbig M.W., Kampik A. Macular hole size as a prognostic factor in macular hole surgery. Br. J. Ophthalmol. 2002;86:390–393. doi: 10.1136/bjo.86.4.390.
    1. Stec L.A., Ross R.D., Williams G.A., Trese M.T., Margherio R.R., Cox M.S., Jr. Vitrectomy for chronic macular holes. Retina. 2004;24:341–347. doi: 10.1097/00006982-200406000-00001.
    1. Kusuhara S., Negi A. Predicting Visual Outcome following Surgery for Idiopathic Macular Holes. Ophthalmologica. 2014;231:125–132. doi: 10.1159/000355492.
    1. Sun Z., Gan D., Jiang C., Wang M., Sprecher A., Jiang A.C., Xu G. Effect of preoperative retinal sensitivity and fixation on long-term prognosis for idiopathic macular holes. Graefes Arch. Clin. Exp. Ophthalmol. 2012;250:1587–1596. doi: 10.1007/s00417-012-1997-5.
    1. Ruiz-Moreno J.M., Staicu C., Piñero D.P., Montero J., Lugo F., Amat P. Optical coherence tomography predictive factors for macular hole surgery outcome. Br. J. Ophthalmol. 2008;92:640–644. doi: 10.1136/bjo.2007.136176.
    1. Spaide R.F., Fujimoto J.G., Waheed N.K. Optical Coherence Tomography Angiography. Retina. 2015;35:2161–2162. doi: 10.1097/IAE.0000000000000881.
    1. Lumbroso B., Rispoli M., Savastano M.C. Longitudinal optical coherence tomography angiography study of type 2 naive choroidal neovascularization early response after treatment. Retina. 2015;35:2242–2251. doi: 10.1097/IAE.0000000000000879.
    1. Coscas G.J., Lupidi M., Coscas F., Cagini C., Souied E.H. Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: A new diagnostic challenge. Retina. 2015;35:2219–2228. doi: 10.1097/IAE.0000000000000766.
    1. Rispoli M., Savastano M.C., Lumbroso B. Capillary network anomalies in branch retinal vein occlusion on optical coherence tomography angiography. Retina. 2015;35:2332–2338. doi: 10.1097/IAE.0000000000000845.
    1. Filho M.A.B., Adhi M., De Carlo T.E., Ferrara D., Baumal C.R., Witkin A.J., Reichel E., Kuehlewein L., Sadda S.R., Sarraf D., et al. Optical coherence tomography angiography in retinal artery occlusion. Retina. 2015;35:2339–2346. doi: 10.1097/IAE.0000000000000850.
    1. Hwang T.S., Jia Y., Gao S.S., Bailey S.T., Lauer A.K., Flaxel C.J., Wilson D.J., Huang D. Optical coherence tomography angiography features of diabetic retinopathy. Retina. 2015;35:2371–2376. doi: 10.1097/IAE.0000000000000716.
    1. Savastano M.C., Federici M., Falsini B., Caporossi A., Minnella A.M. Detecting papillary neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography. Acta Ophthalmol. 2018;96:321–323. doi: 10.1111/aos.13166.
    1. Kim Y.J., Kim S., Lee J.Y., Kim J.-G., Yoon Y.H. Macular capillary plexuses after epiretinal membrane surgery: an optical coherence tomography angiography study. Br. J. Ophthalmol. 2017 doi: 10.1136/bjophthalmol-2017-311188.
    1. Nelis P., Alten F., Clemens C.R., Heiduschka P., Eter N. Quantification of changes in foveal capillary architecture caused by idiopathic epiretinal membrane using OCT angiography. Graefes Arch. Clin. Exp. Ophthalmol. 2017;255:1319–1324. doi: 10.1007/s00417-017-3640-y.
    1. Mayer W.J., Vogel M., Neubauer A., Kernt M., Kampik A., Wolf A., Haritoglou C. Pars Plana Vitrectomy and Internal Limiting Membrane Peeling in Epimacular Membranes: Correlation of Function and Morphology across the Macula. Ophthalmologica. 2013;230:9–17. doi: 10.1159/000350233.
    1. Hanout M., Horan N., Do D.V. Introduction to microperimetry and its use in analysis of geographic atrophy in age-related macular degeneration. Curr. Opin. Ophthalmol. 2015;26:149–156. doi: 10.1097/ICU.0000000000000153.
    1. Karacorlu M., Ozdemir H., Senturk F., Karacorlu S.A., Uysal O. Correlation of retinal sensitivity with visual acuity and macular thickness in eyes with idiopathic epimacular membrane. Int. Ophthalmol. 2010;30:285–290. doi: 10.1007/s10792-009-9333-8.
    1. Romano M.R., Cennamo G., Cesarano I., Cardone D., Nicoletti G., Mastropasqua R., Cennamo G. Changes of Tangential Traction after Macular Peeling: Correlation between en-face Analysis and Macular Sensitivity. Curr. Eye Res. 2017;42:780–788. doi: 10.1080/02713683.2016.1231322.
    1. Rizzo S., Savastano A., Bacherini D., Savastano M.C. Vascular Features of Full-Thickness Macular Hole by OCT Angiography. Ophthalmic Surg. Lasers Imaging Retin. 2017;48:62–68. doi: 10.3928/23258160-20161219-09.
    1. Chen W.-C., Wang Y., Li X.-X. Morphologic and functional evaluation before and after successful macular hole surgery using spectral-domain optical coherence tomography combined with microperimetry. Retina. 2012;32:1733–1742. doi: 10.1097/IAE.0b013e318242b81a.
    1. Bonnabel A., Bron A.M., Isaico R., Dugas B., Nicot F., Creuzot-Garcher C. Long-term anatomical and functional outcomes of idiopathic macular hole surgery. The yield of spectral-domain OCT combined with microperimetry. Graefes Arch. Clin. Exp. Ophthalmol. 2013;251:2505–2511. doi: 10.1007/s00417-013-2339-y.
    1. Scupola A., Mastrocola A., Sasso P., Fasciani R., Montrone L., Falsini B., Abed E. Assessment of Retinal Function Before and After Idiopathic Macular Hole Surgery. Am. J. Ophthalmol. 2013;156:132–139. doi: 10.1016/j.ajo.2013.02.007.
    1. Wilczyński T., Heinke A., Niedzielska-Krycia A., Jorg D., Michalska-Małecka K. Optical coherence tomography angiography features in patients with idiopathic full-thickness macular hole, before and after surgical treatment. Clin. Interv. Aging. 2019;14:505–514. doi: 10.2147/CIA.S189417.
    1. Michalewska Z., Nawrocki J. Swept-Source OCT Angiography of Full-Thickness Macular Holes: Appearance and Artifacts. Ophthalmic Surg. Lasers Imaging Retin. 2018;49:111–121. doi: 10.3928/23258160-20180129-05.

Source: PubMed

3
Suscribir