Impact of intra-partum azithromycin on carriage of group A streptococcus in the Gambia: a posthoc analysis of a double-blind randomized placebo-controlled trial

Isatou Jagne, Alexander J Keeley, Abdoulie Bojang, Bully Camara, Edrissa Jallow, Elina Senghore, Claire Oluwalana, Saikou Y Bah, Claire E Turner, Abdul Karim Sesay, Umberto D'Alessandro, Christian Bottomley, Thushan I de Silva, Anna Roca, Isatou Jagne, Alexander J Keeley, Abdoulie Bojang, Bully Camara, Edrissa Jallow, Elina Senghore, Claire Oluwalana, Saikou Y Bah, Claire E Turner, Abdul Karim Sesay, Umberto D'Alessandro, Christian Bottomley, Thushan I de Silva, Anna Roca

Abstract

Background: Group A Streptococcus (GAS) is a major human pathogen and an important cause of maternal and neonatal sepsis. Asymptomatic bacterial colonization is considered a necessary step towards sepsis. Intra-partum azithromycin may reduce GAS carriage.

Methods: A posthoc analysis of a double-blind, placebo-controlled randomized-trial was performed to determine the impact of 2 g oral dose of intra-partum azithromycin on maternal and neonatal GAS carriage and antibiotic resistance. Following screening, 829 mothers were randomized who delivered 843 babies. GAS was determined by obtaining samples from the maternal and newborn nasopharynx, maternal vaginal tract and breastmilk. Whole Genome Sequencing (WGS) of GAS isolates was performed using the Illumina Miseq platform.

Results: GAS carriage was lower in the nasopharynx of both mothers and babies and breast milk among participants in the azithromycin arm. No differences in GAS carriage were found between groups in the vaginal tract. The occurrence of azithromycin-resistant GAS was similar in both arms, except for a higher prevalence in the vaginal tract among women in the azithromycin arm. WGS revealed all macrolide-resistant vaginal tract isolates from the azithromycin arm were Streptococcus dysgalactiae subspecies equisimilis expressing Lancefield group A carbohydrate (SDSE(A)) harbouring macrolide resistant genes msr(D) and mef(A). Ten of the 45 GAS isolates (22.2%) were SDSE(A).

Conclusions: Oral intra-partum azithromycin reduced GAS carriage among Gambian mothers and neonates however carriage in the maternal vaginal tract was not affected by the intervention due to azithromycin resistant SDSE(A). SDSE(A) resistance must be closely monitored to fully assess the public health impact of intrapartum azithromycin on GAS. Trial registration ClinicalTrials.gov Identifier NCT01800942.

Keywords: Azithromycin; Bacterial carriage; Group A streptococcus; Streptococcus dysgalactiae subspecies equisimilis; Sub-Saharan Africa.

Conflict of interest statement

All authors declare no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Trial Profile. 1All deaths were child deaths, there were no maternal deaths in the trial. 2All withdrawals involved a mother-pair (including twins). 3Mother/baby pair with ≥ 1 missing sample
Fig. 2
Fig. 2
Maternal and neonatal carriage of GAS at different body sites and timepoints. A i. maternal nasopharyngeal carriage and ii. Breastmilk carriage of GAS at days 0, 3, 6, 14 and 28 post-delivery in the azithromycin and placebo arms. B Neonatal nasopharyngeal carriage of GAS at days 0, 3, 6, 14 and 28 after birth in the azithromycin and placebo arms
Fig. 3
Fig. 3
Midpoint rooted maximum likelihood core-genome phylogenetic analysis using RAxML GTRCAT model with 1000 bootstrap replicates. Circle symbols indicate > 99% bootstrap support. A Core-genome (1299 genes) phylogenetic analysis of 35 S. pyogenes isolates from the study cohort. B International contextualization (based on core genome of 1221 genes) of 10 S. dysgalactiae subspecies equisimilis isolates with individual core-genome (upper clade: 2106 genes, lower clade: 2078 genes) phylogenetic analysis of the two distinct clades in the study cohort. (Annotation key: country of origin; black = the Gambia, yellow = USA, dark green = UK, light green = Germany, pink = Japan, white = unknown, symbols; filled = present, unfilled = absent, no symbol = unknown; study participant ID (unique study identifier for mother/baby units); M = mother, B = newborn, NPS = nasopharyngeal swab, VS = vaginal swab, BM = breast milk, AMR = antimicrobial resistance)

References

    1. WHO. Maternal Sepsis. 2018 (cited 2018 10/02/2018). .
    1. Say L, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2(6):e323–e333. doi: 10.1016/S2214-109X(14)70227-X.
    1. Seale AC, et al. Maternal and early onset neonatal bacterial sepsis: burden and strategies for prevention in sub-Saharan Africa. Lancet Infect Dis. 2009;9(7):428–438. doi: 10.1016/S1473-3099(09)70172-0.
    1. Knowles SJ, et al. Maternal sepsis incidence, aetiology and outcome for mother and fetus: a prospective study. BJOG. 2015;122(5):663–671. doi: 10.1111/1471-0528.12892.
    1. Simonsen KA, et al. Early-onset neonatal sepsis. Clin Microbiol Rev. 2014;27(1):21–47. doi: 10.1128/CMR.00031-13.
    1. Okomo U, et al. Aetiology of invasive bacterial infection and antimicrobial resistance in neonates in sub-Saharan Africa: a systematic review and meta-analysis in line with the STROBE-NI reporting guidelines. Lancet Infect Dis. 2019;19(11):1219–1234. doi: 10.1016/S1473-3099(19)30414-1.
    1. Ekelund K, et al. Invasive group A, B, C and G streptococcal infections in Denmark 1999–2002: epidemiological and clinical aspects. Clin Microbiol Infect. 2005;11(7):569–576. doi: 10.1111/j.1469-0691.2005.01169.x.
    1. Rantala S, et al. Clinical presentations and epidemiology of beta-haemolytic streptococcal bacteraemia: a population-based study. Clin Microbiol Infect. 2009;15(3):286–288. doi: 10.1111/j.1469-0691.2008.02672.x.
    1. Anderson BL. Puerperal group A streptococcal infection: beyond Semmelweis. Obstet Gynecol. 2014;123(4):874–882. doi: 10.1097/AOG.0000000000000175.
    1. Ronchetti MP, et al. Neonatal Sepsis. Arch Paediatrics Dev Pathol. 2017;1(3):1015.
    1. Revelas A, Taxmazidis O. Group A streptococcal infections in children. Southern Afr J Epidemiol Infect. 2015;27(3):98–103. doi: 10.1080/10158782.2012.11441493.
    1. Barth D, et al. Invasive and non-invasive group A β-haemolytic streptococcal infections in patients attending public sector facilities in South Africa: 2003–2015. South Afr J Infect Dis. 2017;33(1):12–17.
    1. Belard S, et al. beta-Hemolytic streptococcal throat carriage and tonsillopharyngitis: a cross-sectional prevalence study in Gabon Central Africa. Infection. 2015;43(2):177–183. doi: 10.1007/s15010-014-0709-y.
    1. Armitage EP, et al. High burden and seasonal variation of paediatric scabies and pyoderma prevalence in The Gambia: a cross-sectional study. PLoS Negl Trop Dis. 2019;13(10):e0007801. doi: 10.1371/journal.pntd.0007801.
    1. Chuang I, et al. Population-based surveillance for postpartum invasive group a streptococcus infections, 1995–2000. Clin Infect Dis. 2002;35(6):665–670. doi: 10.1086/342062.
    1. Leonard A, et al. Severe group A streptococcal infections in mothers and their newborns in London and the South East, 2010–2016: assessment of risk and audit of public health management. BJOG. 2019;126(1):44–53. doi: 10.1111/1471-0528.15415.
    1. Barth DD, et al. Rationale and design of the African group A streptococcal infection registry: the AFROStrep study. BMJ Open. 2016;6(2):e010248. doi: 10.1136/bmjopen-2015-010248.
    1. Seale AC, et al. Invasive Group A Streptococcus Infection among Children, Rural Kenya. Emerg Infect Dis. 2016;22(2):224–232. doi: 10.3201/eid2202.151358.
    1. Martin J. The Streptococcus pyogenes Carrier State, in Streptococcus pyogenes: Basic Biology to Clinical Manifestations. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. University of Oklahoma Health Sciences Center. 2016.
    1. Efstratiou ALT. Streptococcus pyogenes: basic biology to clinical manifestations. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. University of Oklahoma Health Sciences Center. 2016.
    1. Roca A, et al. Oral azithromycin given during labour decreases bacterial carriage in the mothers and their offspring: a double-blind randomized trial. Clin Microbiol Infect. 2016;22(6):565 e1-9. doi: 10.1016/j.cmi.2016.03.005.
    1. Roca A, et al. Prevention of bacterial infections in the newborn by pre-delivery administration of azithromycin: Study protocol of a randomized efficacy trial. BMC Pregnancy Childbirth. 2015;15:302. doi: 10.1186/s12884-015-0737-3.
    1. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170.
    1. Bankevich A, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi: 10.1089/cmb.2012.0021.
    1. Gurevich A, et al. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–1075. doi: 10.1093/bioinformatics/btt086.
    1. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 2014;30(9):1312–1313. doi: 10.1093/bioinformatics/btu033.
    1. Chochua S, et al. Emergent Invasive Group A Streptococcus dysgalactiae subsp. equisimilis, United States, 2015–2018. Emerg Infect Dis. 2019;25(8):1543–1547. doi: 10.3201/eid2508.181758.
    1. Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiology. 1990;1(1):43–46. doi: 10.1097/00001648-199001000-00010.
    1. Salman S, et al. Pharmacokinetics of transfer of azithromycin into the breast milk of african mothers. Antimicrob Agents Chemother. 2015;60(3):1592–1599. doi: 10.1128/AAC.02668-15.
    1. Vodstrcil LA, et al. Measurement of tissue azithromycin levels in self-collected vaginal swabs post treatment using liquid chromatography and tandem mass spectrometry (LC-MS/MS) PLoS One. 2017;12(5):e0177615. doi: 10.1371/journal.pone.0177615.
    1. Levison ME, Levison JH. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am. 2009;23(4):791–vii. doi: 10.1016/j.idc.2009.06.008.
    1. Ciszewski M, Szewczyk EM. Potential factors enabling human body colonization by animal Streptococcus dysgalactiae subsp. equisimilis strains. Curr Microbiol. 2017;74(5):650–654. doi: 10.1007/s00284-017-1232-z.
    1. Yamaoka S, et al. Neonatal streptococcal toxic shock syndrome caused by Streptococcus dysgalactiae subsp. equisimilis. Pediatr Infect Dis J. 2010;29(10):979–81. doi: 10.1097/INF.0b013e3181e5292f.
    1. Watanabe S, et al. Severe invasive streptococcal infection by Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis. Microbiol Immunol. 2016;60(1):1–9. doi: 10.1111/1348-0421.12334.
    1. Loubinoux J, et al. Adult invasive and noninvasive infections due to Streptococcus dysgalactiae subsp. equisimilis in France from 2006 to 2010. J Clin Microbiol. 2013;51(8):2724–7. doi: 10.1128/JCM.01262-13.
    1. Zhang Y, et al. Predominant role of msr(D) over mef(A) in macrolide resistance in Streptococcus pyogenes. Microbiology. 2016;162(1):46–52. doi: 10.1099/mic.0.000206.
    1. Tatsuno I, et al. Functional predominance of msr(D), which is more effective as mef(A)-associated than mef(E)-associated, over mef(A)/mef(E) in macrolide resistance in Streptococcus pyogenes. Microb Drug Resist. 2018;24(8):1089–1097. doi: 10.1089/mdr.2017.0277.
    1. Martin J. The Streptococcus pyogenes Carrier State, in Streptococcus pyogenes: basic biology to clinical manifestations. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Oklahoma City (OK). 2016.

Source: PubMed

3
Suscribir