Long-lasting effect of oral azithromycin taken by women during labour on infant nutrition: Follow-up cohort of a randomized clinical trial in western Gambia

Anna Roca, Bully Camara, Claire Oluwalana, Kodou Lette, Christian Bottomley, Umberto D'Alessandro, Anna Roca, Bully Camara, Claire Oluwalana, Kodou Lette, Christian Bottomley, Umberto D'Alessandro

Abstract

Objective: To assess the effect of administering an oral dose of 2g of azithromycin in Gambian women during labour on infant growth.

Methods: Children whose mothers had been randomized to receive either an oral dose of 2g of azithromycin or placebo during labour were visited at home at the end of infancy by trained study nurses blind to the treatment allocation. The follow-up visit of these cohorts (exposed and non-exposed to azithromycin), which was not part of the original trial design, was conducted between November 2014 and May 2015 when the infants were 11 to 13 months of age. During visits, nurses recorded anthropometrical measurements and transcribed information from the infants' welfare cards.

Results: Four-hundred and sixty-five (79.6%) of the 584 infants aged 11-13 months at the time of the survey were recruited. The proportion of children with an age-adjusted Z-score <-2SD for mid-upper-arm circumference (MUAC) was lower among those exposed to azithromycin [1.3% versus 6.3%, OR = 0.21 95%CI (0.06,0.72), p = 0.006] and there was weak evidence of a difference in the proportion of infants with weight-for-age (WAZ) Z-score <-2SD [7.1% versus 12.1%, OR = 0.58 95%CI (0.33,1.04), p = 0.065]. For all other malnutrition indicators the proportions were similar in the exposed and un-exposed cohort.

Conclusions: Our results show that azithromycin in labour may have a beneficial effect in MUAC among children who are below the curve. Larger studies with closer follow-up are warranted.

Trial registration (main trial): ClinicalTrials.gov Identifier NCT01800942.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

    1. Harding-Esch EM, Edwards T, Mkocha H, Munoz B, Holland MJ, Burr SE, Sillah A, Gaydos CA, Stare D, Mabey DC, Bailey RL, West SK (2010) Trachoma prevalence and associated risk factors in the gambia and Tanzania: baseline results of a cluster randomised controlled trial. PLoS Negl Trop Dis 4: e861 10.1371/journal.pntd.0000861
    1. Porco TC, Gebre T, Ayele B, House J, Keenan J, Zhou Z, Hong KC, Stoller N, Ray KJ, Emerson P, Gaynor BD, Lietman TM (2009) Effect of mass distribution of azithromycin for trachoma control on overall mortality in Ethiopian children: a randomized trial. JAMA 302: 962–968. 302/9/962 [pii]; 10.1001/jama.2009.1266
    1. Burr SE, Milne S, Jafali J, Bojang E, Rajasekhar M, Hart J, Harding-Esch EM, Holland MJ, Mabey DC, Sillah A, Bailey RL, Roca A (2014) Mass administration of azithromycin and Streptococcus pneumoniae carriage: cross-sectional surveys in the Gambia. Bull World Health Organ 92: 490–498. 10.2471/BLT.13.133462 BLT.13.133462 [pii].
    1. Gough EK, Moodie EE, Prendergast AJ, Johnson SM, Humphrey JH, Stoltzfus RJ, Walker AS, Trehan I, Gibb DM, Goto R, Tahan S, de Morais MB, Manges AR (2014) The impact of antibiotics on growth in children in low and middle income countries: systematic review and meta-analysis of randomised controlled trials. BMJ 348: g2267 10.1136/bmj.g2267
    1. Luntamo M, Kulmala T, Cheung YB, Maleta K, Ashorn P (2013) The effect of antenatal monthly sulphadoxine-pyrimethamine, alone or with azithromycin, on foetal and neonatal growth faltering in Malawi: a randomised controlled trial. Trop Med Int Health 18: 386–397. 10.1111/tmi.12074
    1. Unger HW, Ome-Kaius M, Wangnapi RA, Umbers AJ, Hanieh S, Suen CS, Robinson LJ, Rosanas-Urgell A, Wapling J, Lufele E, Kongs C, Samol P, Sui D, Singirok D, Bardaji A, Schofield L, Menendez C, Betuela I, Siba P, Mueller I, Rogerson SJ (2015) Sulphadoxine-pyrimethamine plus azithromycin for the prevention of low birthweight in Papua New Guinea: a randomised controlled trial. BMC Med 13: 9 10.1186/s12916-014-0258-3 s12916-014-0258-3 [pii].
    1. Unger HW, Wangnapi RA, Ome-Kaius M, Boeuf P, Karl S, Mueller I, Rogerson SJ (2016) Azithromycin-containing intermittent preventive treatment in pregnancy affects gestational weight gain, an important predictor of birthweight in Papua New Guinea—an exploratory analysis. Matern Child Nutr 12: 699–712. 10.1111/mcn.12215
    1. Hallamaa L, Cheung YB, Maleta K, Luntamo M, Ashorn U, Gladstone M, Kulmala T, Mangani C, Ashorn P (2018) Child Health Outcomes After Presumptive Infection Treatment in Pregnant Women: A Randomized Trial. Pediatrics. peds.2017–2459 [pii]; 10.1542/peds.2017-2459
    1. Roca A, Oluwalana C, Camara B, Bojang A, Burr S, Davis TM, Bailey R, Kampmann B, Mueller J, Bottomley C, D'Alessandro U (2015) Prevention of bacterial infections in the newborn by pre-delivery administration of azithromycin: Study protocol of a randomized efficacy trial. BMC Pregnancy Childbirth 15: 302 10.1186/s12884-015-0737-3 [pii].
    1. Roca A, Oluwalana C, Bojang A, Camara B, Kampmann B, Bailey R, Demba A, Bottomley C, D'Alessandro U (2016) Oral azithromycin given during labour decreases bacterial carriage in the mothers and their offspring: a double-blind randomized trial. Clin Microbiol Infect 22: 565–569. S1198-743X(16)30020-9 [pii]; 10.1016/j.cmi.2016.03.005
    1. Oluwalana C, Camara B, Bottomley C, Goodier S, Bojang A, Kampmann B, Ceesay S, D'Alessandro U, Roca A (2017) Azithromycin in Labor Lowers Clinical Infections in Mothers and Newborns: A Double-Blind Trial. Pediatrics 139 peds.2016-2281 [pii]; 10.1542/peds.2016-2281
    1. Lazzerini M, Seward N, Lufesi N, Banda R, Sinyeka S, Masache G, Nambiar B, Makwenda C, Costello A, McCollum ED, Colbourn T (2016) Mortality and its risk factors in Malawian children admitted to hospital with clinical pneumonia, 2001–12: a retrospective observational study. Lancet Glob Health 4: e57–e68. S2214-109X(15)00215-6 [pii]; 10.1016/S2214-109X(15)00215-6
    1. WHO (1995) WHO Physical status: the use and interpretation of anthropometry: 1–8 Nov 1993 geneva: WHO/TRS/854;1995.
    1. Burr SE, Hart J, Edwards T, Harding-Esch EM, Holland MJ, Mabey DC, Sillah A, Bailey RL (2014) Anthropometric indices of Gambian children after one or three annual rounds of mass drug administration with azithromycin for trachoma control. BMC Public Health 14: 1176 1471-2458-14-1176 [pii]; 10.1186/1471-2458-14-1176
    1. Salman S, Davis TM, Page-Sharp M, Camara B, Oluwalana C, Bojang A, D'Alessandro U, Roca A (2015) Pharmacokinetics of Transfer of Azithromycin into the Breast Milk of African Mothers. Antimicrob Agents Chemother 60: 1592–1599. AAC.02668-15 [pii]; 10.1128/AAC.02668-15
    1. Coles CL, Rahmathullah L, Kanungo R, Katz J, Sandiford D, Devi S, Thulasiraj RD, Tielsch JM (2012) Pneumococcal carriage at age 2 months is associated with growth deficits at age 6 months among infants in South India. J Nutr 142: 1088–1094. jn.111.156844 [pii]; 10.3945/jn.111.156844
    1. Jasseh M, Webb EL, Jaffar S, Howie S, Townend J, Smith PG, Greenwood BM, Corrah T (2011) Reaching millennium development goal 4—the Gambia. Trop Med Int Health 16: 1314–1325. 10.1111/j.1365-3156.2011.02809.x

Source: PubMed

3
Suscribir