Baseline-adjusted proportional odds models for the quantification of treatment effects in trials with ordinal sum score outcomes

Muriel Buri, Armin Curt, John Steeves, Torsten Hothorn, Muriel Buri, Armin Curt, John Steeves, Torsten Hothorn

Abstract

Background: Sum scores of ordinal outcomes are common in randomized clinical trials. The approaches routinely employed for assessing treatment effects, such as t-tests or Wilcoxon tests, are not particularly powerful in detecting changes in relevant parameters or lack the ability to incorporate baseline information. Hence, tailored statistical methods are needed for the analysis of ordinal outcomes in clinical research.

Methods: We propose baseline-adjusted proportional odds logistic regression models to overcome previous limitations in the analysis of ordinal outcomes in randomized clinical trials. For the validation of our method, we focus on common ordinal sum score outcomes of neurological clinical trials such as the upper extremity motor score, the spinal cord independence measure, and the self-care subscore of the latter. We compare the statistical power of our models to other conventional approaches in a large simulation study of two-arm randomized clinical trials based on data from the European Multicenter Study about Spinal Cord Injury (EMSCI, ClinicalTrials.gov Identifier: NCT01571531). We also use the new method as an alternative analysis of the historical Sygen®clinical trial.

Results: The simulation study of all postulated trial settings demonstrated that the statistical power of the novel method was greater than that of conventional methods. Baseline adjustments were more suited for the analysis of the upper extremity motor score compared to the spinal cord independence measure and its self-care subscore.

Conclusions: The proposed baseline-adjusted proportional odds models allow the global treatment effect to be directly interpreted. This clear interpretation, the superior statistical power compared to the conventional analysis approaches, and the availability of open-source software support the application of this novel method for the analysis of ordinal outcomes of future clinical trials.

Keywords: Clinical trial; Distribution regression; EMSCI; NISCI; Odds ratio; Ordinal scores; Spinal cord; Spinal cord independence measure (SCIM); Sygen®; Transformation model; Upper extremity motor score (UEMS).

Conflict of interest statement

The authors declare they have no competing interests.

References

    1. Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, Johansen M, Jones L, Krassioukov A, Mulcahey M, Schmidt-Read M, Waring W. International standards for neurological classification of spinal cord injury (revised 2011) J Spinal Cord Med. 2011;34(6):535–46. doi: 10.1179/204577211X13207446293695.
    1. Curt A, Van Hedel HJ, Klaus D, Dietz V, EMSCI study group Recovery from a spinal cord injury: Significance of compensation, neural plasticity, and repair. J Neurotrauma. 2008;25(6):677–85. doi: 10.1089/neu.2007.0468.
    1. Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, Rouiller EM. Nogo-a–specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med. 2006;12(7):790. doi: 10.1038/nm1436.
    1. Schwab ME, Strittmatter SM. Nogo limits neural plasticity and recovery from injury. Curr Opin Neurobiol. 2014;27:53–60. doi: 10.1016/j.conb.2014.02.011.
    1. Kirshblum S, Waring W, Biering-Sorensen F, Burns S, Johansen M, Schmidt-Read M, Donovan W, Graves D, Jha A, Jones L, et al. Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2011;34(6):547–54. doi: 10.1179/107902611X13186000420242.
    1. Catz M, Itzkovich F, Steinberg O, Philo H, Ring J, Ronen R, Spasser R, Gepstein A, Tamir A. The catz-itzkovich SCIM: A revised version of the spinal cord independence measure. Disabil Rehabil. 2001;23(6):263–8. doi: 10.1080/096382801750110919.
    1. Catz A, Itzkovich M, Tesio L, Biering-Sorensen F, Weeks C, Laramee M, Craven B, Tonack M, Hitzig S, Glaser E, et al. A multicenter international study on the spinal cord independence measure, version iii: Rasch psychometric validation. Spinal Cord. 2007;45(4):275. doi: 10.1038/sj.sc.3101960.
    1. Tanadini L, Steeves J, Curt A, Hothorn T. Autoregressive transitional ordinal model to test for treatment effect in neurological trials with complex endpoints. BMC Med Res Methodol. 2016;16:149. doi: 10.1186/s12874-016-0251-y.
    1. Rudhe C, van Hedel HJ. Upper extremity function in persons with tetraplegia: Relationships between strength, capacity, and the spinal cord independence measure. Neurorehabil Neural Repair. 2009;23(5):413–21. doi: 10.1177/1545968308331143.
    1. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon J, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal cord injury: Results of the second national acute spinal cord injury study. N Engl J Med. 1990;322(20):1405–11. doi: 10.1056/NEJM199005173222001.
    1. Casha S, Zygun D, McGowan MD, Bains I, Yong VW, John Hurlbert R. Results of a phase ii placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain. 2012;135(4):1224–36. doi: 10.1093/brain/aws072.
    1. Heller GZ, Manuguerra M, Chow R. How to analyze the visual analogue scale: Myths, truths and clinical relevance. Scand J Pain. 2016;13(1):67–75. doi: 10.1016/j.sjpain.2016.06.012.
    1. Parsons NR. Proportional-odds models for repeated composite and long ordinal outcome scales. Stat Med. 2013;32(18):3181–91. doi: 10.1002/sim.5756.
    1. Horton M, Tennant A. Patient reported outcomes: Misinference from ordinal scales? Trials. 2011;12(1):65. doi: 10.1186/1745-6215-12-S1-A65.
    1. Itzkovich M, Tripolski M, Zeilig G, Ring H, Rosentul N, Ronen J, Spasser R, Gepstein R, Catz A. Rasch analysis of the catz-itzkovich spinal cord independence measure. Spinal Cord. 2002;40(8):396. doi: 10.1038/sj.sc.3101315.
    1. Marino RJ, Graves DE. Metric properties of the asia motor score: Subscales improve correlation with runctional activities1. Arch Phys Med Rehabil. 2004;85(11):1804–10. doi: 10.1016/j.apmr.2004.04.026.
    1. Reed R, Mehra M, Kirshblum S, Maier D, Lammertse D, Blight A, Rupp R, Jones L, Abel R, Weidner N, et al. Spinal cord ability ruler: An interval scale to measure volitional performance after spinal cord injury. Spinal Cord. 2017;55(8):730. doi: 10.1038/sc.2017.1.
    1. Samejima F. Handbook of Item Response Theory, Volume One. New York: Springer; 2016. Graded response models.
    1. Masters GN. A rasch model for partial credit scoring. Psychometrika. 1982;47(2):149–74. doi: 10.1007/BF02296272.
    1. McCullagh P. Regression models for ordinal data. J R Stat Soc B. 1980;42(2):109–27.
    1. Agresti A. Analysis of Ordinal Categorical Data. vol. 656. Hoboken: Wiley; 2010.
    1. Tutz G. Regression for Categorical Data. vol. 34. Cambridge: Cambridge University Press; 2011.
    1. Kramer JL, Lammertse DP, Schubert M, Curt A, Steeves JD. Relationship between motor recovery and independence after sensorimotor-complete cervical spinal cord injury. Neurorehabil Neural Repair. 2012;26(9):1064–71. doi: 10.1177/1545968312447306.
    1. Hothorn T, Möst L, Bühlmann P. Most likely transformations. Scand J Stat. 2018;45(1):110–34. doi: 10.1111/sjos.12291.
    1. Hu C, Yeilding N, Davis HM, Zhou H. Bounded cutcome score modeling: Application to treating psoriasis with ustekinumab. J Pharmacokinet Pharmacodyn. 2011;38(4):497–517. doi: 10.1007/s10928-011-9205-5.
    1. Liu Q, Shepherd BE, Li C, Harrell FE. Modeling continuous response variables using ordinal regression. Stat Med. 2017;36(27):4316–35. doi: 10.1002/sim.7433.
    1. Hothorn T. Letter to the Editor response: Garcia et al, Biostatistics. 2018;20(3):546–8. doi: 10.1093/biostatistics/kxy079.
    1. Hothorn T. Most likely transformations: The mlt package. J Stat Softw. 2020;92(1):1–68. doi: 10.18637/jss.v092.i01.
    1. Steeves J, Kramer J, Fawcett J, Cragg J, Lammertse D, Blight A, Marino R, Ditunno Jr J, Coleman W, Geisler F, et al. Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord. 2011;49(2):257. doi: 10.1038/sc.2010.99.
    1. Marino RJ, Burns S, Graves DE, Leiby BE, Kirshblum S, Lammertse DP. Upper-and lower-extremity motor recovery after traumatic cervical spinal cord injury: An update from the national spinal cord injury database. Arch Phys Med Rehabil. 2011;92(3):369–75. doi: 10.1016/j.apmr.2010.09.027.
    1. Kennedy PE, Cade BS. Randomization tests for multiple regression. Commun Stat Simul Comput. 1996;25(4):923–36. doi: 10.1080/03610919608813350.
    1. Parhat P, Rosenberger WF, Diao G. Conditional monte carlo randomization tests for regression models. Stat Med. 2014;33(18):3078–88. doi: 10.1002/sim.6149.
    1. Strasser H, Weber C. On the asymptotic theory of permutation statistics. Math Methods Stat. 1999;8:220–50.
    1. Pesarin F, Salmaso L. Permutation Tests for Complex Data: Theory, Applications and Software. Hoboken: Wiley; 2010.
    1. Hothorn T, Hornik K, Van De Wiel MA, Zeileis A. A lego system for conditional inference. Am Stat. 2006;60(3):257–63. doi: 10.1198/000313006X118430.
    1. Wang Y, Tian L. 4th International Conference on Industrial Economics System and Industrial Security Engineering (IEIS) Kyoto, Japan: IEEE; 2017. The equivalence between Mann-Whitney Wilcoxon test and score test based on the proportional odds model for ordinal responses.
    1. Vickers AJ, Altman DG. Analysing controlled trials with baseline and follow up measurements. BMJ. 2001;323(7321):1123–24. doi: 10.1136/bmj.323.7321.1123.
    1. Geisler FH, Coleman WP, Grieco G, Poonian D, Group SS, et al. Recruitment and early treatment in a multicenter study of acute spinal cord injury. Spine. 2001;26:58–67. doi: 10.1097/00007632-200112151-00013.
    1. Geisler FH, Coleman WP, Grieco G, Poonian D, Group SS, et al. Measurements and recovery patterns in a multicenter study of acute spinal cord injury. Spine. 2001;26:68–86. doi: 10.1097/00007632-200112151-00014.
    1. Geisler FH, Coleman WP, Grieco G, Poonian D, Group SS, et al. The Sygen® multicenter acute spinal cord injury study. Spine. 2001;26:87–98. doi: 10.1097/00007632-200112151-00015.
    1. Fay MP, Malinovsky Y. Confidence intervals of the mann-whitney parameter that are compatible with the wilcoxon-mann-whitney test. Stat Med. 2018;37(27):3991–4006. doi: 10.1002/sim.7890.
    1. Whitehead J. Sample size calculations for ordered categorical data. Stat Med. 1993;12(24):2257–71. doi: 10.1002/sim.4780122404.
    1. Hothorn T. Marginally interpretable linear transformation models for clustered observations. Technical report. arXiv. 2019. .
    1. Team RC. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.

Source: PubMed

3
Suscribir