Cluster analysis unveils a severe persistent respiratory impairment phenotype 3-months after severe COVID-19

Jeanne-Marie Perotin, Fabien Gierski, Lois Bolko, Sandra Dury, Sarah Barrière, Claire Launois, Maxime Dewolf, Stéphane Chouabe, Eric Bongrain, Davy Picard, Eric Tran, Yoann N'Guyen, Bruno Mourvillier, Amélie Servettaz, Amandine Rapin, Claude Marcus, François Lebargy, Arthur Kaladjian, Jean-Hugues Salmon, Gaetan Deslee, Jeanne-Marie Perotin, Fabien Gierski, Lois Bolko, Sandra Dury, Sarah Barrière, Claire Launois, Maxime Dewolf, Stéphane Chouabe, Eric Bongrain, Davy Picard, Eric Tran, Yoann N'Guyen, Bruno Mourvillier, Amélie Servettaz, Amandine Rapin, Claude Marcus, François Lebargy, Arthur Kaladjian, Jean-Hugues Salmon, Gaetan Deslee

Abstract

Background: The mid-term respiratory sequelae in survivors of severe COVID-19 appear highly heterogeneous. In addition, factors associated with respiratory sequelae are not known. In this monocentric prospective study, we performed a multidisciplinary assessment for respiratory and muscular impairment and psychological distress 3 months after severe COVID-19. We analysed factors associated with severe persistent respiratory impairment, amongst demographic, COVID-19 severity, and 3-month assessment.

Methods: Patients with severe SARS-CoV-2 pneumonia requiring ≥ 4L/min were included for a systematic 3-month visit, including respiratory assessment (symptoms, lung function, CT scan), muscular evaluation (body composition, physical function and activity, disability), psychopathological evaluation (anxiety, depression, post-traumatic stress disorder-PTSD) and quality of life. A cluster analysis was performed to identify subgroups of patients based on objective functional measurements: DLCO, total lung capacity and 6-min walking distance (6MWD).

Results: Sixty-two patients were analysed, 39% had dyspnea on exercise (mMRC ≥ 2), 72% had DLCO < 80%, 90% had CT-scan abnormalities; 40% had sarcopenia/pre-sarcopenia and 31% had symptoms of PTSD. Cluster analysis identified a group of patients (n = 18, 30.5%) with a severe persistent (SP) respiratory impairment (DLCO 48 ± 12%, 6MWD 299 ± 141 m). This SP cluster was characterized by older age, severe respiratory symptoms, but also sarcopenia/pre-sarcopenia, symptoms of PTSD and markedly impaired quality of life. It was not associated with initial COVID-19 severity or management.

Conclusions and clinical implication: We identified a phenotype of patients with severe persistent respiratory and muscular impairment and psychological distress 3 months after severe COVID-19. Our results highlight the need for multidisciplinary assessment and management after severe SARS-CoV-2 pneumonia. Trial registration The study was registered on ClinicalTrials.gov (May 6, 2020): NCT04376840.

Keywords: COVID-19; Clustering; DLCO; Post-traumatic stress disorder; Sarcopenia.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
CT-scan features at diagnosis and 3-month assessment in patients with decreased CT-score (a, b) and patients with increased CT-score (c) at 3 months
Fig. 2:
Fig. 2:
3-month CT-score (a) and CT-score change from admission (b) in patients in the severe persistent respiratory impairment (SP) cluster (red bars) and the non severe persistent respiratory impairment (NSP) cluster (green bars). Three patients were not included in the clustering analysis: DLCO was not available for 2 patients, 6MWD was not available for one patient (white bars; NA: not applicable)

References

    1. Xie L, Liu Y, Fan B, Xiao Y, Tian Q, Chen L, et al. Dynamic changes of serum SARS-coronavirus IgG, pulmonary function and radiography in patients recovering from SARS after hospital discharge. Respir Res. 2005;6:5. doi: 10.1186/1465-9921-6-5.
    1. Das KM, Lee EY, Singh R, Enani MA, Al Dossari K, Van Gorkom K, et al. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging. 2017;27(3):342–349. doi: 10.4103/ijri.IJRI_469_16.
    1. Hui DS, Wong KT, Ko FW, Tam LS, Chan DP, Woo J, et al. The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest. 2005;128(4):2247–2261. doi: 10.1378/chest.128.4.2247.
    1. Tsang HW, Scudds RJ, Chan EY. Psychosocial impact of SARS. Emerg Infect Dis. 2004;10(7):1326–1327.
    1. Sim K, Huak Chan Y, Chong PN, Chua HC, Wen SS. Psychosocial and coping responses within the community health care setting towards a national outbreak of an infectious disease. J Psychosom Res. 2010;68(2):195–202. doi: 10.1016/j.jpsychores.2009.04.004.
    1. Bellan M, Soddu D, Balbo PE, Baricich A, Zeppegno P, Avanzi GC, et al. Respiratory and psychophysical sequelae among patients with COVID-19 four months after hospital discharge. JAMA Netw Open. 2021;4(1):e2036142. doi: 10.1001/jamanetworkopen.2020.36142.
    1. Anastasio F, Barbuto S, Scarnecchia E, Cosma P, Fugagnoli A, Rossi G, et al. Medium-term impact of COVID-19 on pulmonary function, functional capacity and quality of life. Eur Respir J. 2021;58(3):2004015. doi: 10.1183/13993003.04015-2020.
    1. Qin W, Chen S, Zhang Y, Dong F, Zhang Z, Hu B, et al. Diffusion capacity abnormalities for carbon monoxide in patients with COVID-19 at 3-month follow-up. Eur Respir J. 2021;58(1):200317. doi: 10.1183/13993003.03677-2020.
    1. Lerum TV, Aaløkken TM, Brønstad E, Aarli B, Ikdahl E, Lund KMA, et al. Dyspnoea, lung function and CT findings 3 months after hospital admission for COVID-19. Eur Respir J. 2021;57(4):20034418. doi: 10.1183/13993003.03448-2020.
    1. Wu X, Liu X, Zhou Y, Yu H, Li R, Zhan Q, et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. Lancet Respir Med. 2021;9(7):747–754. doi: 10.1016/S2213-2600(21)00174-0.
    1. Wells AU, Desai SR, Rubens MB, Goh NS, Cramer D, Nicholson AG, et al. Idiopathic pulmonary fibrosis: a composite physiologic index derived from disease extent observed by computed tomography. Am J Respir Crit Care Med. 2003;167(7):962–969. doi: 10.1164/rccm.2111053.
    1. Ng CK, Chan JW, Kwan TL, To TS, Chan YH, Ng FY, et al. Six month radiological and physiological outcomes in severe acute respiratory syndrome (SARS) survivors. Thorax. 2004;59(10):889–891. doi: 10.1136/thx.2004.023762.
    1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi: 10.1093/ageing/afy169.
    1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–423. doi: 10.1093/ageing/afq034.
    1. Webster K, Cella D, Yost K. The Functional Assessment of Chronic Illness Therapy (FACIT) Measurement System: properties, applications, and interpretation. Health Qual Life Outcomes. 2003;1:79. doi: 10.1186/1477-7525-1-79.
    1. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Yao SN, Cottraux J, Note I, De Mey-Guillard C, Mollard E, Ventureyra V. Evaluation of Post-traumatic Stress Disorder: validation of a measure, the PCLS. Encephale. 2003;29(3 Pt 1):232–238.
    1. Johnston R, Jones K, Manley D. Confounding and collinearity in regression analysis: a cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Qual Quant. 2018;52(4):1957–1976. doi: 10.1007/s11135-017-0584-6.
    1. Waatevik M, Frisk B, Real FG, Hardie JA, Bakke P, Nilsen RM, et al. One Year Change in 6-Minute Walk Test Outcomes is Associated with COPD Prognosis. COPD. 2020;17(6):662–671. doi: 10.1080/15412555.2020.1839041.
    1. Huang Y, Tan C, Wu J, Chen M, Wang Z, Luo L, et al. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir Res. 2020;21(1):163. doi: 10.1186/s12931-020-01429-6.
    1. González J, Benítez ID, Carmona P, Santisteve S, Monge A, Moncusí-Moix A, et al. Pulmonary Function and Radiologic Features in Survivors of Critical COVID-19: A 3-Month Prospective Cohort. Chest. 2021;8:67.
    1. Solomon JJ, Heyman B, Ko JP, Condos R, Lynch DA. CT of post-acute lung complications of COVID-19. Radiology. 2021;301(2):E383–E395. doi: 10.1148/radiol.2021211396.
    1. Garg M, Maralakunte M, Dhooria S. Sequelae of COVID-19 pneumonia: Is it correct to label everything as post-COVID lung fibrosis? J Postgrad Med. 2021;67(4):224–227. doi: 10.4103/jpgm.jpgm_550_21.
    1. Mylvaganam RJ, Bailey JI, Sznajder JI, Sala MA, Consortium NCCC Recovering from a pandemic: pulmonary fibrosis after SARS-CoV-2 infection. Eur Respir Rev. 2021;30(162):210194. doi: 10.1183/16000617.0194-2021.
    1. Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G. Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur J Epidemiol. 2020;35(12):1123–1138. doi: 10.1007/s10654-020-00698-1.
    1. Hashem WM, Abdelaziz H, Sallam DE, Ismail MA, Ahmed AE. Impact of COVID-19 on digestive system: prevalence, clinical characteristics, outcome, and relation to the severity of COVID-19. Egypt J Intern Med. 2022;34(1):45. doi: 10.1186/s43162-022-00132-w.
    1. Wang Y, Li Y, Zhang Y, Liu Y, Liu Y. Are gastrointestinal symptoms associated with higher risk of Mortality in COVID-19 patients? A systematic review and meta-analysis. BMC Gastroenterol. 2022;22(1):106. doi: 10.1186/s12876-022-02132-0.
    1. Tournadre A, Vial G, Capel F, Soubrier M, Boirie Y. Sarcopenia. Joint Bone Spine. 2019;86(3):309–314. doi: 10.1016/j.jbspin.2018.08.001.
    1. Bone AE, Hepgul N, Kon S, Maddocks M. Sarcopenia and frailty in chronic respiratory disease. Chron Respir Dis. 2017;14(1):85–99. doi: 10.1177/1479972316679664.
    1. Maddocks M, Kon SS, Canavan JL, Jones SE, Nolan CM, Labey A, et al. Physical frailty and pulmonary rehabilitation in COPD: a prospective cohort study. Thorax. 2016;71(11):988–995. doi: 10.1136/thoraxjnl-2016-208460.
    1. Jones SE, Maddocks M, Kon SS, Canavan JL, Nolan CM, Clark AL, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70(3):213–218. doi: 10.1136/thoraxjnl-2014-206440.
    1. Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A, Orlandini A, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet. 2015;386(9990):266–273. doi: 10.1016/S0140-6736(14)62000-6.
    1. Tuzun S, Keles A, Okutan D, Yildiran T, Palamar D. Assessment of musculoskeletal pain, fatigue and grip strength in hospitalized patients with COVID-19. Eur J Phys Rehabil Med. 2021;57(4):653–662. doi: 10.23736/S1973-9087.20.06563-6.
    1. Nagarajan R, Krishnamoorthy Y, Basavarachar V, Dakshinamoorthy R. Prevalence of post-traumatic stress disorder among survivors of severe COVID-19 infections: A systematic review and meta-analysis. J Affect Disord. 2022;299:52–59. doi: 10.1016/j.jad.2021.11.040.
    1. Tu Y, Zhang Y, Li Y, Zhao Q, Bi Y, Lu X, et al. Post-traumatic stress symptoms in COVID-19 survivors: a self-report and brain imaging follow-up study. Mol Psychiatry. 2021;26:7475. doi: 10.1038/s41380-021-01223-w.
    1. O'Brien K, Townsend L, Dowds J, Bannan C, Nadarajan P, Kent B, et al. 1-year quality of life and health-outcomes in patients hospitalised with COVID-19: a longitudinal cohort study. Respir Res. 2022;23(1):115. doi: 10.1186/s12931-022-02032-7.
    1. Faverio P, Luppi F, Rebora P, D'Andrea G, Stainer A, Busnelli S, et al. One-year pulmonary impairment after severe COVID-19: a prospective, multicenter follow-up study. Respir Res. 2022;23(1):65. doi: 10.1186/s12931-022-01994-y.

Source: PubMed

3
Suscribir