Effects of exercise on NAFLD using non-targeted metabolomics in adipose tissue, plasma, urine, and stool

Ambrin Farizah Babu, Susanne Csader, Ville Männistö, Milla-Maria Tauriainen, Heikki Pentikäinen, Kai Savonen, Anton Klåvus, Ville Koistinen, Kati Hanhineva, Ursula Schwab, Ambrin Farizah Babu, Susanne Csader, Ville Männistö, Milla-Maria Tauriainen, Heikki Pentikäinen, Kai Savonen, Anton Klåvus, Ville Koistinen, Kati Hanhineva, Ursula Schwab

Abstract

The mechanisms by which exercise benefits patients with non-alcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, remain poorly understood. A non-targeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics analysis was used to identify metabolic changes associated with NAFLD in humans upon exercise intervention (without diet change) across four different sample types-adipose tissue (AT), plasma, urine, and stool. Altogether, 46 subjects with NAFLD participated in this randomized controlled intervention study. The intervention group (n = 21) performed high-intensity interval training (HIIT) for 12 weeks while the control group (n = 25) kept their sedentary lifestyle. The participants' clinical parameters and metabolic profiles were compared between baseline and endpoint. HIIT significantly decreased fasting plasma glucose concentration (p = 0.027) and waist circumference (p = 0.028); and increased maximum oxygen consumption rate and maximum achieved workload (p < 0.001). HIIT resulted in sample-type-specific metabolite changes, including accumulation of amino acids and their derivatives in AT and plasma, while decreasing in urine and stool. Moreover, many of the metabolite level changes especially in the AT were correlated with the clinical parameters monitored during the intervention. In addition, certain lipids increased in plasma and decreased in the stool. Glyco-conjugated bile acids decreased in AT and urine. The 12-week HIIT exercise intervention has beneficial ameliorating effects in NAFLD subjects on a whole-body level, even without dietary changes and weight loss. The metabolomics analysis applied to the four different sample matrices provided an overall view on several metabolic pathways that had tissue-type specific changes after HIIT intervention in subjects with NAFLD. The results highlight especially the role of AT in responding to the HIIT challenge, and suggest that altered amino acid metabolism in AT might play a critical role in e.g. improving fasting plasma glucose concentration.Trial registration ClinicalTrials.gov (NCT03995056).

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Flow chart of the study, M male, F female.
Figure 2
Figure 2
Volcano plot of significantly different metabolites from the exercise intervention in (a) adipose tissue, (b) plasma, (c) urine, (d) stool. The data of all metabolites are plotted as the standardized estimates of the linear mixed model for the interaction between group (controls and intervention) and time (baseline and endpoint of the exercise intervention) versus the negative logarithm of the raw p-values. Thresholds are shown as dashed lines. Metabolites selected as significantly increased in the intervention group are highlighted as green dots, and those decreased significantly in the intervention group compared to the controls are shown as green dots.
Figure 3
Figure 3
Heatmap representing the significant Spearman's correlations (adjusted for age, gender, BMI, and T2D) between the clinical parameters (column-wise) and the top significantly different metabolites identified in all sample matrices combined (row-wise) using delta change from baseline to post intervention. The color of the cells indicates the strength of the relationship (rs). The cells marked with asterisks (*) demonstrate significant correlations (p < 0.05). Green sidebars indicate the control group, and red sidebars represent the exercise intervention group. Waist cm waist circumference, IHL intrahepatic lipid content, ALT alanine aminotransferase, AST aspartate transaminase, gGT gamma-glutamyl transferase, VO2max the maximum rate of oxygen consumption (cardiorespiratory fitness), maxW maximum workload achieved, TC total cholesterol, HDL high-density lipoprotein cholesterol.
Figure 4
Figure 4
A 12-week high-intensity interval training has beneficial ameliorating effects in NAFLD subjects at whole body level by regulating glucose metabolism and promoting alterations in amino acid, lipid, and bile acid metabolism.

References

    1. Maurice J, Manousou P. Non-alcoholic fatty liver disease. Clin. Med. 2018;18:245–250. doi: 10.7861/clinmedicine.18-3-245.
    1. Younossi ZM, et al. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84. doi: 10.1002/hep.28431.
    1. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: From steatosis to cirrhosis. Hepatology. 2006;43:99–112. doi: 10.1002/hep.20973.
    1. Byrne CD, Targher G. NAFLD: A multisystem disease. J. Hepatol. 2015;62:S47–S64. doi: 10.1016/j.jhep.2014.12.012.
    1. Zhang H-J, et al. Effects of moderate and vigorous exercise on nonalcoholic fatty liver disease: A randomized clinical trial. JAMA Intern. Med. 2016;176:1074–1082. doi: 10.1001/jamainternmed.2016.3202.
    1. Golabi P, et al. Effectiveness of exercise in hepatic fat mobilization in nonalcoholic fatty liver disease: Systematic review. World J. Gastroenterol. 2016;22:6318–6327. doi: 10.3748/wjg.v22.i27.6318.
    1. Van Der Heijden GJ, et al. A 12-week aerobic exercise program reduces hepatic fat accumulation and insulin resistance in obese, hispanic adolescents. Obesity. 2010;18:384–390. doi: 10.1038/oby.2009.274.
    1. Keating SE, Hackett DA, George J, Johnson NA. Exercise and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Hepatol. 2012;57:157–166. doi: 10.1016/j.jhep.2012.02.023.
    1. Davoodi, M., Moosavi, H. & Nikbakht, M. The effect of eight weeks selected aerobic exercise on liver parenchyma and liver enzymes (AST, ALT) of fat liver patients. J. Shahrekord Univ. Med. Sci.14 (2012).
    1. Babu AF, et al. Positive effects of exercise intervention without weight loss and dietary changes in NAFLD-related clinical parameters: A systematic review and meta-analysis. Nutrients. 2021;13:3135. doi: 10.3390/nu13093135.
    1. Daskalaki E, et al. A study of the effects of exercise on the urinary metabolome using normalisation to individual metabolic output. Metabolites. 2015;5:119–139. doi: 10.3390/metabo5010119.
    1. Zhao X, et al. Response of gut microbiota to metabolite changes induced by endurance exercise. Front. Microbiol. 2018;9:1–11. doi: 10.3389/fmicb.2018.00001.
    1. Kalhan SC, et al. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism. 2011;60:404–413. doi: 10.1016/j.metabol.2010.03.006.
    1. Gorden DL, et al. Biomarkers of NAFLD progression: A lipidomics approach to an epidemic 1. J. Lipid Res. 2015;56:722–736. doi: 10.1194/jlr.P056002.
    1. de Mello VD, et al. Serum aromatic and branched-chain amino acids associated with NASH demonstrate divergent associations with serum lipids. Liver Int. 2021;41:754–763. doi: 10.1111/liv.14743.
    1. Dong S, et al. Urinary metabolomics analysis identifies key biomarkers of different stages of nonalcoholic fatty liver disease. World J. Gastroenterol. 2017;23:2771–2784. doi: 10.3748/wjg.v23.i15.2771.
    1. Chu H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: A microbiota-centered view of non-alcoholic fatty liver disease. Gut. 2019;68:359–370. doi: 10.1136/gutjnl-2018-316307.
    1. Chong J, Yamamoto M, Xia J. MetaboAnalystR 2.0: From raw spectra to biological insights. Metabolites. 2019;9:57. doi: 10.3390/metabo9030057.
    1. Marchesini G, et al. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016;64:1388–1402.
    1. Cheng S, et al. Effect of aerobic exercise and diet on liver fat in pre-diabetic patients with non-alcoholic-fatty-liver-disease: A randomized controlled trial. Sci. Rep. 2017;7:15952. doi: 10.1038/s41598-017-16159-x.
    1. Pugh CJA, et al. Exercise training reverses endothelial dysfunction in nonalcoholic fatty liver disease. Am. J. Physiol. Heart Circ. Physiol. 2014;307:H1298–H1306. doi: 10.1152/ajpheart.00306.2014.
    1. Cuthbertson DJ, et al. Dissociation between exercise-induced reduction in liver fat and changes in hepatic and peripheral glucose homoeostasis in obese patients with non-alcoholic fatty liver disease. Clin. Sci. (Lond) 2016;130:93–104. doi: 10.1042/CS20150447.
    1. Church TS, LaMonte MJ, Barlow CE, Blair SN. Cardiorespiratory fitness and body mass index as predictors of cardiovascular disease mortality among men with diabetes. Arch. Intern. Med. 2005;165:2114–2120. doi: 10.1001/archinte.165.18.2114.
    1. Wei M, et al. The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men. Ann. Intern. Med. 1999;130:89–96. doi: 10.7326/0003-4819-130-2-199901190-00002.
    1. Evans PL, McMillin SL, Weyrauch LA, Witczak CA. Regulation of skeletal muscle glucose transport and glucose metabolism by exercise training. Nutrients. 2019;11:1–24.
    1. Ross R, et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020;16:177–189. doi: 10.1038/s41574-019-0310-7.
    1. Zadeh-Vakili A, Tehrani FR, Hosseinpanah F. Waist circumference and insulin resistance: A community based cross sectional study on reproductive aged Iranian women. Diabetol. Metab. Syndr. 2011;3:18. doi: 10.1186/1758-5996-3-18.
    1. Kashiwagi R, et al. Effective waist circumference reduction rate necessary to avoid the development of type 2 diabetes in Japanese men with abdominal obesity. Endocr. J. 2017;64:881–894. doi: 10.1507/endocrj.EJ17-0113.
    1. Johnson NA, et al. Aerobic exercise training reduces hepatic and visceral lipids in obese individuals without weight loss. Hepatology. 2009;50:1105–1112. doi: 10.1002/hep.23129.
    1. Winn NC, et al. Energy-matched moderate and high intensity exercise training improves nonalcoholic fatty liver disease risk independent of changes in body mass or abdominal adiposity—A randomized trial. Metabolism. 2018;78:128–140. doi: 10.1016/j.metabol.2017.08.012.
    1. Kaartinen N, et al. The Finnish National Dietary Survey in Adults and Elderly (FinDiet 2017) EFSA Support. Publ. 2020;17:1914E.
    1. Shou J, Chen PJ, Xiao WH. The effects of BCAAs on insulin resistance in athletes. J. Nutr. Sci. Vitaminol. (Tokyo) 2019;65:383–389. doi: 10.3177/jnsv.65.383.
    1. Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J. Biol. Chem. 2010;285:11348–11356. doi: 10.1074/jbc.M109.075184.
    1. Lynch CJ, et al. Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2002;283:E503–E513. doi: 10.1152/ajpendo.00084.2002.
    1. Zhang L, et al. Leucine supplementation: A novel strategy for modulating lipid metabolism and energy homeostasis. Nutrients. 2020;12:1299. doi: 10.3390/nu12051299.
    1. Cai H, Dong L, Liu F. Recent advances in adipose mTOR signaling and function: Therapeutic prospects. Trends Pharmacol. Sci. 2016;37:303–317. doi: 10.1016/j.tips.2015.11.011.
    1. Bruckbauer A, Zemel MB. Effects of dairy consumption on SIRT1 and mitochondrial biogenesis in adipocytes and muscle cells. Nutr. Metab. 2011;8:1–12. doi: 10.1186/1743-7075-8-91.
    1. Duan Y, et al. Nutritional and regulatory roles of leucine in muscle growth and fat reduction. Front. Biosci. (Landmark Ed.) 2015;20:796–813. doi: 10.2741/4338.
    1. Sun X, Zemel MB. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr. Metab. 2009;6:1–8. doi: 10.1186/1743-7075-6-26.
    1. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 2014;10:24–36. doi: 10.1038/nrendo.2013.204.
    1. Ma Q, et al. Threonine, but not lysine and methionine, reduces fat accumulation by regulating lipid metabolism in obese mice. J. Agric. Food Chem. 2020;68:4876–4883. doi: 10.1021/acs.jafc.0c01023.
    1. José V, et al. The role of PGC-1 α/UCP2 signaling in the beneficial effects of physical exercise on the brain. Front. Neurosci. 2019;13:1–9.
    1. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1:361–370. doi: 10.1016/j.cmet.2005.05.004.
    1. Li J, et al. Muscle metabolomics analysis reveals potential biomarkers of exercise - dependent improvement of the diaphragm function in chronic obstructive pulmonary disease. Int. J. Mol. Med. 2020;6:1644–1660. doi: 10.3892/ijmm.2020.4537.
    1. Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports Med. 2008;38:401–423. doi: 10.2165/00007256-200838050-00004.
    1. Vargovic P, Ukropec J, Laukova M, Cleary S, Manz B, Pacak K, Kvetnansky R. Adipocytes as a new source of catecholamine production. FEBS Lett. 2011;585:2279–2284. doi: 10.1016/j.febslet.2011.06.001.
    1. Bazzano M, et al. Exercise induced changes in salivary and serum metabolome in trained standardbred, assessed by1H-NMR. Metabolites. 2020;10:1–14. doi: 10.3390/metabo10070298.
    1. Tabone M, et al. The effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes. Sci. Rep. 2021;11:1–12. doi: 10.1038/s41598-021-82947-1.
    1. Amaretti A, et al. Profiling of protein degraders in cultures of human gut microbiota. Front. Microbiol. 2019;10:1–13. doi: 10.3389/fmicb.2019.02614.
    1. Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr. Nutr. Rep. 2018;7:198. doi: 10.1007/s13668-018-0248-8.
    1. Heimann E, Nyman M, Pålbrink A-K, Lindkvist-Petersson K, Degerman E. Branched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes. Adipocyte. 2016;5:359. doi: 10.1080/21623945.2016.1252011.
    1. Meadows JA, Wargo MJ. Carnitine in bacterial physiology and metabolism. Microbiology (United Kingdom) 2015;161:1161–1174.
    1. Mingorance C, Gonzalez Del Pozo M, Dolores Herrera M, Alvarez De Sotomayor M. Oral supplementation of propionyl-l-carnitine reduces body weight and hyperinsulinaemia in obese Zucker rats. Br. J. Nutr. 2009;102:1145–1153. doi: 10.1017/S0007114509389230.
    1. Mingorance C, Rodriguez-Rodriguez R, Justo ML, Herrera MD, de Sotomayor MA. Pharmacological effects and clinical applications of propionyl-l-carnitine. Nutr. Rev. 2011;69:279–290. doi: 10.1111/j.1753-4887.2011.00387.x.
    1. Perichon, R., Bell, Lauren, N., Wulff, J., Nguyen, U. T. & Watkins, S. Biomarkers for fatty liver disease and methods using the same (2016).
    1. Mardinoglu A, et al. Personal model-assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol. Syst. Biol. 2017;13:916. doi: 10.15252/msb.20167422.
    1. Lustgarten MS, Price LL, Chalé A, Fielding RA. Metabolites related to gut bacterial metabolism, peroxisome proliferator-activated receptor-alpha activation, and insulin sensitivity are associated with physical function in functionally-limited older adults. Aging Cell. 2014;13:918. doi: 10.1111/acel.12251.
    1. Hendrikx T, Schnabl B. Indoles: metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J. Intern. Med. 2019;286:32–40. doi: 10.1111/joim.12892.
    1. Lin Y-H, et al. Aryl hydrocarbon receptor agonist indigo protects against obesity-related insulin resistance through modulation of intestinal and metabolic tissue immunity. Int. J. Obes. 2019;43:2407–2421. doi: 10.1038/s41366-019-0340-1.
    1. Manaf FA, et al. Characterizing the plasma metabolome during and following a maximal exercise cycling test. J. Appl. Physiol. 2018 doi: 10.1152/japplphysiol.00499.2018.
    1. Kartsoli S, Kostara CE, Tsimihodimos V, Bairaktari ET, Christodoulou DK. Lipidomics in non-alcoholic fatty liver disease. World J. Hepatol. 2020;12:436–450. doi: 10.4254/wjh.v12.i8.436.
    1. Summers SA. Ceramides in insulin resistance and lipotoxicity. Prog. Lipid Res. 2006;45:42–72. doi: 10.1016/j.plipres.2005.11.002.
    1. Li J, et al. Serum metabolomic analysis of the effect of exercise on nonalcoholic fatty liver disease. Endocr. Connect. 2019;8:299–308. doi: 10.1530/EC-19-0023.
    1. Bergman BC, et al. Serum sphingolipids: Relationships to insulin sensitivity and changes with exercise in humans. Am. J. Physiol. Endocrinol. Metab. 2015;309:E398–E408. doi: 10.1152/ajpendo.00134.2015.
    1. Montgomery MK, et al. Regulation of glucose homeostasis and insulin action by ceramide acyl-chain length: A beneficial role for very long-chain sphingolipid species. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2016;1861:1828–1839. doi: 10.1016/j.bbalip.2016.08.016.
    1. Zhou Y, et al. Noninvasive detection of nonalcoholic steatohepatitis using clinical markers and circulating levels of lipids and metabolites. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2016;14:1463–1472.e6.
    1. Draijer LG, et al. Lipidomics in nonalcoholic fatty liver disease: Exploring serum lipids as biomarkers for pediatric nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr. 2020;71:433–439. doi: 10.1097/MPG.0000000000002875.
    1. Kasumov T, et al. Improved insulin sensitivity after exercise training is linked to reduced plasma C14:0 ceramide in obesity and type 2 diabetes. Obesity. 2015;23:1414–1421. doi: 10.1002/oby.21117.
    1. Hoene M, et al. Muscle and liver-specific alterations in lipid and acylcarnitine metabolism after a single bout of exercise in mice. Sci. Rep. 2016;6:1–10. doi: 10.1038/srep22218.
    1. Gottlieb A, Canbay A. Why bile acids are so important in non-alcoholic fatty liver disease (NAFLD) progression. Cells. 2019;8:1358. doi: 10.3390/cells8111358.
    1. Mouzaki M, et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS One. 2016;11:1–13.
    1. Ferslew BC, et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig. Dis. Sci. 2015;60:3318–3328. doi: 10.1007/s10620-015-3776-8.
    1. Aranha MM, et al. Bile acid levels are increased in the liver of patients with steatohepatitis. Eur. J. Gastroenterol. Hepatol. 2008;20:519–525. doi: 10.1097/MEG.0b013e3282f4710a.
    1. Targher G, Corey KE, Byrne CD, Roden M. The complex link between NAFLD and type 2 diabetes mellitus—Mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 2021;18:599–612. doi: 10.1038/s41575-021-00448-y.
    1. Schranner D, Kastenmüller G, Schönfelder M, Römisch-Margl W, Wackerhage H. Metabolite concentration changes in humans after a bout of exercise: A systematic review of exercise metabolomics studies. Sports Med. Open. 2020;6:1–17. doi: 10.1186/s40798-020-0238-4.
    1. Morville T, et al. Divergent effects of resistance and endurance exercise on plasma bile acids, FGF19, and FGF21 in humans. JCI Insight. 2018;3:e122737. doi: 10.1172/jci.insight.122737.
    1. Danese E, et al. Analytical evaluation of three enzymatic assays for measuring total bile acids in plasma using a fully-automated clinical chemistry platform. PLoS One. 2017;12:1–13.
    1. Wertheim BC, et al. Physical activity as a determinant of fecal bile acid levels. Cancer Epidemiol. Biomark. Prev. 2009;18:1591–1598. doi: 10.1158/1055-9965.EPI-08-1187.
    1. Kudchodkar BJ, Sodhi HS, Mason DT, Borhani NO. Effects of acute caloric restriction on cholesterol metabolism in man. Am. J. Clin. Nutr. 1977;30:1135–1146. doi: 10.1093/ajcn/30.7.1135.
    1. Morville T, Sahl RE, Moritz T, Helge JW, Clemmensen C. Plasma metabolome profiling of resistance exercise and endurance exercise in humans. Cell Rep. 2020;33:108554. doi: 10.1016/j.celrep.2020.108554.
    1. Alzharani MA, Alshuwaier GO, Aljaloud KS, Al-Tannak NF, Watson DG. Metabolomics profiling of plasma, urine and saliva after short term training in young professional football players in Saudi Arabia. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-75755-6.
    1. Kim YS, Li XF, Kang KH, Ryu B, Kim SK. Stigmasterol isolated from marine microalgae Navicula incerta induces apoptosis in human hepatoma HepG2 cells. BMB Rep. 2014;47:433–438. doi: 10.5483/BMBRep.2014.47.8.153.
    1. Casal JJ, Bollini M, Lombardo ME, Bruno AM. Thalidomide analogues: Tumor necrosis factor-alpha inhibitors and their evaluation as anti-inflammatory agents. Eur. J. Pharm. Sci. 2016;83:114–119. doi: 10.1016/j.ejps.2015.12.017.
    1. Gabay O, et al. Stigmasterol: a phytosterol with potential anti-osteoarthritic properties. Osteoarthr. Cartil. 2010;18:106–116. doi: 10.1016/j.joca.2009.08.019.
    1. Li C, Liu Y, Xie Z, Lu Q, Luo S. Stigmasterol protects against Ang II-induced proliferation of the A7r5 aortic smooth muscle cell-line. Food Funct. 2015;6:2266–2272. doi: 10.1039/C5FO00031A.
    1. Saleem M, et al. Association between sphingolipids and cardiopulmonary fitness in coronary artery disease patients undertaking cardiac rehabilitation. J. Gerontol. Ser. A. 2020;75:671–679. doi: 10.1093/gerona/gly273.
    1. Hallsworth K, et al. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: A randomized controlled trial. Clin. Sci. (Lond) 2015;129:1097–1105. doi: 10.1042/CS20150308.
    1. Tornvall G. Assessment of Physical Capabilities. Blackwell Scientific Publ; 1963.
    1. Physical activity guidelines for Americans, Vol. 53 25. (2018).
    1. Taylor HL, et al. A questionnaire for the assessment of leisure time physical activities. J. Chron. Dis. 1978;31:741–755. doi: 10.1016/0021-9681(78)90058-9.
    1. Bonnefoy M, et al. Simultaneous validation of ten physical activity questionnaires in older men: A doubly labeled water study. J. Am. Geriatr. Soc. 2001;49:28–35. doi: 10.1046/j.1532-5415.2001.49006.x.
    1. Hakola L, et al. Moderators of maintained increase in aerobic exercise among aging men and women in a 4-year randomized controlled trial: The DR’s EXTRA study. J. Phys. Act. Health. 2015;12:1477–1484. doi: 10.1123/jpah.2014-0299.
    1. Ferrannini E. The theoretical bases of indirect calorimetry: A review. Metabolism. 1988;37:287–301. doi: 10.1016/0026-0495(88)90110-2.
    1. Klåvus A, et al. “Notame”: Workflow for non-targeted LC–MS metabolic profiling. Metabolites. 2020;10:1–35. doi: 10.3390/metabo10040135.
    1. Smith CA, et al. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005;27:747–751. doi: 10.1097/01.ftd.0000179845.53213.39.
    1. Wishart DS, et al. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007;35:D521–D526. doi: 10.1093/nar/gkl923.
    1. Kim S, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44:D1202–D1213. doi: 10.1093/nar/gkv951.
    1. Hiroshi T, et al. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods. 2015;12:523–526. doi: 10.1038/nmeth.3393.
    1. The R Core Team. R: The R Project for Statistical Computing. (2019).
    1. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.1(1) (2015).
    1. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Software 1(13) (2017).
    1. The LIPID MAPS® Lipidomics Gateway.
    1. MetaboAtlas21.
    1. Tsugawa H, et al. Hydrogen rearrangement rules: Computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal. Chem. 2016;88:7946–7958. doi: 10.1021/acs.analchem.6b00770.
    1. Metsalu T, Vilo J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43:W566–W570. doi: 10.1093/nar/gkv468.
    1. Goedhart J, Luijsterburg MS. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci. Rep. 2020;10:1–5. doi: 10.1038/s41598-020-76603-3.

Source: PubMed

3
Suscribir