The 30-year evolution of airway pressure release ventilation (APRV)

Sumeet V Jain, Michaela Kollisch-Singule, Benjamin Sadowitz, Luke Dombert, Josh Satalin, Penny Andrews, Louis A Gatto, Gary F Nieman, Nader M Habashi, Sumeet V Jain, Michaela Kollisch-Singule, Benjamin Sadowitz, Luke Dombert, Josh Satalin, Penny Andrews, Louis A Gatto, Gary F Nieman, Nader M Habashi

Abstract

Airway pressure release ventilation (APRV) was first described in 1987 and defined as continuous positive airway pressure (CPAP) with a brief release while allowing the patient to spontaneously breathe throughout the respiratory cycle. The current understanding of the optimal strategy to minimize ventilator-induced lung injury is to "open the lung and keep it open". APRV should be ideal for this strategy with the prolonged CPAP duration recruiting the lung and the minimal release duration preventing lung collapse. However, APRV is inconsistently defined with significant variation in the settings used in experimental studies and in clinical practice. The goal of this review was to analyze the published literature and determine APRV efficacy as a lung-protective strategy. We reviewed all original articles in which the authors stated that APRV was used. The primary analysis was to correlate APRV settings with physiologic and clinical outcomes. Results showed that there was tremendous variation in settings that were all defined as APRV, particularly CPAP and release phase duration and the parameters used to guide these settings. Thus, it was impossible to assess efficacy of a single strategy since almost none of the APRV settings were identical. Therefore, we divided all APRV studies divided into two basic categories: (1) fixed-setting APRV (F-APRV) in which the release phase is set and left constant; and (2) personalized-APRV (P-APRV) in which the release phase is set based on changes in lung mechanics using the slope of the expiratory flow curve. Results showed that in no study was there a statistically significant worse outcome with APRV, regardless of the settings (F-ARPV or P-APRV). Multiple studies demonstrated that P-APRV stabilizes alveoli and reduces the incidence of acute respiratory distress syndrome (ARDS) in clinically relevant animal models and in trauma patients. In conclusion, over the 30 years since the mode's inception there have been no strict criteria in defining a mechanical breath as being APRV. P-APRV has shown great promise as a highly lung-protective ventilation strategy.

Keywords: APRV; ARDS; Lung protection; Ventilator-induced lung injury.

Figures

Fig. 1
Fig. 1
Comparison of APRV pressure waveforms. Artistic depiction of airway pressure waveforms, all of which were defined as APRV, illustrating the significant variability in what has been defined as an APRV breath. Stock in 1987 used 60 % CPAP with TLow of 1.27 s and a respiratory rate (RR) of 20 [2]. Davis in 1993 used a similar %CPAP, but decreased the RR by prolonging THigh and TLow [3]. Gama de Abreau in 2010 simulated conventional ventilation with a prolonged TLow and short THigh [4]. Finally, Roy in 2013 used a very brief adaptive TLow and large THigh with 90 % CPAP [5]. Of note, though the ventilator pressure is set at zero, this does not reflect true pressure as the brief TLow prevents full deflation of the lung, and thus prevents end-expiratory pressure from reaching zero. Figures ac are examples of fixed-APRV (F-APRV) and figure d of personalized APRV (P-APRV)
Fig. 2
Fig. 2
Method of setting expiratory duration (TLow). a Typical personalized airway pressure release ventilation (P-APRV) airway pressure and flow curves. Correctly set P-APRV has a very brief release phase (time at low pressure—TLow) and CPAP phase (time at high pressure—THigh) [6]. The THigh is ~90 % of each breath. The two other P-ARPV settings are the pressure at inspiration (PHigh) and at expiration (PLow). TLow is sufficiently brief such that end-expiratory pressure (PLow) never reaches 0 cmH2O measured by the tracheal pressure (green line). b Maintain alveolar stability by adaptively adjusting the expiratory duration as directed by the expiratory flow curve. The rate of lung collapse is seen in the normal (slope 45°) and acutely injured lung (ARDS, slope 30°). ARDS causes a more rapid lung collapse due to decreased lung compliance. Our preliminary studies have shown that if the end-expiratory flow (EEF; −45 L/min) to the peak expiratory flow (PEF; −60 L/min) ratio is equal to 0.75, the resultant TLow (0.5 s) is sufficient to stabilize alveoli [54, 55]. The lung with ARDS collapses more rapidly such that the EEF/PEF ratio of 75 % identifies an expiratory duration of 0.45 s as necessary to stabilize alveoli. Thus, this method of setting expiratory duration is adaptive to changes in lung pathophysiology and personalizes the mechanical breath to each individual patient

References

    1. Downs JB, Stock MC. Airway pressure release ventilation: a new concept in ventilatory support. Crit Care Med. 1987;15:459–461. doi: 10.1097/00003246-198701000-00018.
    1. Stock MC, Downs JB, Frolicher DA. Airway pressure release ventilation. Crit Care Med. 1987;15:462–466. doi: 10.1097/00003246-198705000-00002.
    1. Davis K, Jr, Johnson DJ, Branson RD, Campbell RS, Johannigman JA, Porembka D. Airway pressure release ventilation. Arch Surg. 1993;128:1348–1352. doi: 10.1001/archsurg.1993.01420240056010.
    1. Gama de Abreu M, Cuevas M, Spieth PM, Carvalho AR, Hietschold V, Stroszczynski C, Wiedemann B, Koch T, Pelosi P, Koch E. Regional lung aeration and ventilation during pressure support and biphasic positive airway pressure ventilation in experimental lung injury. Crit Care. 2010;14:R34. doi: 10.1186/cc8912.
    1. Roy S, Habashi N, Sadowitz B, Andrews P, Ge L, Wang G, Roy P, Ghosh A, Kuhn M, Satalin J, Gatto LA, Lin X, Dean DA, Vodovotz Y, Nieman G. Early airway pressure release ventilation prevents ARDS—a novel preventive approach to lung injury. Shock. 2013;39:28–38.
    1. Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med. 2005;33:S228–S240. doi: 10.1097/01.CCM.0000155920.11893.37.
    1. Carvalho AR, Spieth PM, Pelosi P, Beda A, Lopes AJ, Neykova B, Heller AR, Koch T, Gama de Abreu M. Pressure support ventilation and biphasic positive airway pressure improve oxygenation by redistribution of pulmonary blood flow. Anesth Analg. 2009;109:856–865. doi: 10.1213/ane.0b013e3181aff245.
    1. Carvalho NC, Guldner A, Beda A, Rentzsch I, Uhlig C, Dittrich S, Spieth PM, Wiedemann B, Kasper M, Koch T, Richter T, Rocco PR, Pelosi P, de Abreu MG. Higher levels of spontaneous breathing reduce lung injury in experimental moderate acute respiratory distress syndrome. Crit Care Med. 2014;42:e702–e715. doi: 10.1097/CCM.0000000000000605.
    1. Gama de Abreu M, Spieth PM, Pelosi P, Carvalho AR, Walter C, Schreiber-Ferstl A, Aikele P, Neykova B, Hubler M, Koch T. Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med. 2008;36:818–827. doi: 10.1097/01.CCM.0000299736.55039.3A.
    1. Guldner A, Braune A, Carvalho N, Beda A, Zeidler S, Wiedemann B, Wunderlich G, Andreeff M, Uhlig C, Spieth PM, Koch T, Pelosi P, Kotzerke J, de Abreu MG. Higher levels of spontaneous breathing induce lung recruitment and reduce global stress/strain in experimental lung injury. Anesthesiology. 2014;120:673–682. doi: 10.1097/ALN.0000000000000124.
    1. Henzler D, Hochhausen N, Bensberg R, Schachtrupp A, Biechele S, Rossaint R, Kuhlen R. Effects of preserved spontaneous breathing activity during mechanical ventilation in experimental intra-abdominal hypertension. Intensive Care Med. 2010;36:1427–1435. doi: 10.1007/s00134-010-1827-3.
    1. Hering R, Bolten JC, Kreyer S, Berg A, Wrigge H, Zinserling J, Putensen C. Spontaneous breathing during airway pressure release ventilation in experimental lung injury: effects on hepatic blood flow. Intensive Care Med. 2008;34:523–527. doi: 10.1007/s00134-007-0957-8.
    1. Hering R, Viehofer A, Zinserling J, Wrigge H, Kreyer S, Berg A, Minor T, Putensen C. Effects of spontaneous breathing during airway pressure release ventilation on intestinal blood flow in experimental lung injury. Anesthesiology. 2003;99:1137–1144. doi: 10.1097/00000542-200311000-00021.
    1. Hering R, Zinserling J, Wrigge H, Varelmann D, Berg A, Kreyer S, Putensen C. Effects of spontaneous breathing during airway pressure release ventilation on respiratory work and muscle blood flow in experimental lung injury. Chest. 2005;128:2991–2998. doi: 10.1378/chest.128.4.2991.
    1. Kill C, Hahn O, Dietz F, Neuhaus C, Schwarz S, Mahling R, Wallot P, Jerrentrup A, Steinfeldt T, Wulf H, Dersch W. Mechanical ventilation during cardiopulmonary resuscitation with intermittent positive-pressure ventilation, bilevel ventilation, or chest compression synchronized ventilation in a pig model. Crit Care Med. 2014;42:e89–e95. doi: 10.1097/CCM.0b013e3182a63fa0.
    1. Kreyer S, Putensen C, Berg A, Soehle M, Muders T, Wrigge H, Zinserling J, Hering R. Effects of spontaneous breathing during airway pressure release ventilation on cerebral and spinal cord perfusion in experimental acute lung injury. J Neurosurg Anesthesiol. 2010;22:323–329. doi: 10.1097/ANA.0b013e3181e775f1.
    1. Martin LD, Wetzel RC, Bilenki AL. Airway pressure release ventilation in a neonatal lamb model of acute lung injury. Crit Care Med. 1991;19:373–378. doi: 10.1097/00003246-199103000-00016.
    1. Matsuzawa Y, Nakazawa K, Yamamura A, Akashi T, Kitagaki K, Eishi Y, Makita K. Airway pressure release ventilation reduces the increase in bronchoalveolar lavage fluid high-mobility group box-1 levels and lung water in experimental acute respiratory distress syndrome induced by lung lavage. Eur J Anaesthesiol. 2010;27:726–733. doi: 10.1097/EJA.0b013e328333c2b0.
    1. Neumann P, Hedenstierna G. Ventilatory support by continuous positive airway pressure breathing improves gas exchange as compared with partial ventilatory support with airway pressure release ventilation. Anesth Analg. 2001;92:950–958. doi: 10.1097/00000539-200104000-00030.
    1. Neumann P, Wrigge H, Zinserling J, Hinz J, Maripuu E, Andersson LG, Putensen C, Hedenstierna G. Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support. Crit Care Med. 2005;33:1090–1095. doi: 10.1097/01.CCM.0000163226.34868.0A.
    1. Rasanen J, Downs JB, Stock MC. Cardiovascular effects of conventional positive pressure ventilation and airway pressure release ventilation. Chest. 1988;93:911–915. doi: 10.1378/chest.93.5.911.
    1. Slim AM, Martinho S, Slim J, Davenport E, Castillo-Rojas LM, Shry EA. The effect of airway pressure release ventilation on pulmonary catheter readings: specifically pulmonary capillary wedge pressure in a swine model. Anesthesiology Res Prac. 2011;2011:371594.
    1. Smith RA, Smith DB. Does airway pressure release ventilation alter lung function after acute lung injury? Chest. 1995;107:805–808. doi: 10.1378/chest.107.3.805.
    1. Wrigge H, Zinserling J, Neumann P, Defosse J, Magnusson A, Putensen C, Hedenstierna G. Spontaneous breathing improves lung aeration in oleic acid-induced lung injury. Anesthesiology. 2003;99:376–384. doi: 10.1097/00000542-200308000-00019.
    1. Wrigge H, Zinserling J, Neumann P, Muders T, Magnusson A, Putensen C, Hedenstierna G. Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial. Crit Care. 2005;9:R780–R789. doi: 10.1186/cc3908.
    1. Xia J, Sun B, He H, Zhang H, Wang C, Zhan Q. Effect of spontaneous breathing on ventilator-induced lung injury in mechanically ventilated healthy rabbits: a randomized, controlled, experimental study. Crit Care. 2011;15:R244. doi: 10.1186/cc10502.
    1. Bratzke E, Downs JB, Smith RA. Intermittent CPAP: a new mode of ventilation during general anesthesia. Anesthesiology. 1998;89:334–340. doi: 10.1097/00000542-199808000-00008.
    1. Cane RD, Peruzzi WT, Shapiro BA. Airway pressure release ventilation in severe acute respiratory failure. Chest. 1991;100:460–463. doi: 10.1378/chest.100.2.460.
    1. Chiang AA, Steinfeld A, Gropper C, MacIntyre N. Demand-flow airway pressure release ventilation as a partial ventilatory support mode: comparison with synchronized intermittent mandatory ventilation and pressure support ventilation. Crit Care Med. 1994;22:1431–1437. doi: 10.1097/00003246-199409000-00013.
    1. Dart BW, Maxwell RA, Richart CM, Brooks DK, Ciraulo DL, Barker DE, Burns RP. Preliminary experience with airway pressure release ventilation in a trauma/surgical intensive care unit. J Trauma. 2005;59:71–76. doi: 10.1097/00005373-200507000-00010.
    1. Garner W, Downs JB, Stock MC, Rasanen J. Airway pressure release ventilation (APRV). A human trial. Chest. 1988;94:779–781. doi: 10.1378/chest.94.4.779.
    1. Gonzalez M, Arroliga AC, Frutos-Vivar F, Raymondos K, Esteban A, Putensen C, Apezteguia C, Hurtado J, Desmery P, Tomicic V, Elizalde J, Abroug F, Arabi Y, Moreno R, Anzueto A, Ferguson ND. Airway pressure release ventilation versus assist-control ventilation: a comparative propensity score and international cohort study. Intensive Care Med. 2010;36:817–827. doi: 10.1007/s00134-010-1837-1.
    1. Hanna K, Seder CW, Weinberger JB, Sills PA, Hagan M, Janczyk RJ. Airway pressure release ventilation and successful lung donation. Arch Surg. 2011;146:325–328. doi: 10.1001/archsurg.2011.35.
    1. Hering R, Peters D, Zinserling J, Wrigge H, von Spiegel T, Putensen C. Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury. Intensive Care Med. 2002;28:1426–1433. doi: 10.1007/s00134-002-1442-z.
    1. Kamath SS, Super DM, Mhanna MJ. Effects of airway pressure release ventilation on blood pressure and urine output in children. Pediatr Pulmonol. 2010;45:48–54. doi: 10.1002/ppul.21058.
    1. Kaplan LJ, Bailey H, Formosa V. Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care. 2001;5:221–226. doi: 10.1186/cc1027.
    1. Liu L, Tanigawa K, Ota K, Tamura T, Yamaga S, Kida Y, Kondo T, Ishida M, Otani T, Sadamori T, Tsumura R, Takeda T, Iwasaki Y, Hirohashi N. Practical use of airway pressure release ventilation for severe ARDS—a preliminary report in comparison with a conventional ventilatory support. Hiroshima J Med Sci. 2009;58:83–88.
    1. Maxwell RA, Green JM, Waldrop J, Dart BW, Smith PW, Brooks D, Lewis PL, Barker DE. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma. 2010;69:501–510. doi: 10.1097/TA.0b013e3181e75961.
    1. Putensen C, Zech S, Wrigge H, Zinserling J, Stuber F, Von Spiegel T, Mutz N. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164:43–49. doi: 10.1164/ajrccm.164.1.2001078.
    1. Rasanen J, Cane RD, Downs JB, Hurst JM, Jousela IT, Kirby RR, Rogove HJ, Stock MC. Airway pressure release ventilation during acute lung injury: a prospective multicenter trial. Crit Care Med. 1991;19:1234–1241. doi: 10.1097/00003246-199110000-00004.
    1. Schultz TR, Costarino AJA, Durning SM, Napoli LA, Schears G, Godinez RI, Priestley M, Dominguez T, Lin R, Helfaer M. Airway pressure release ventilation in pediatrics. Pediatr Crit Care Med. 2001;2:243–246. doi: 10.1097/00130478-200107000-00010.
    1. Sydow M, Burchardi H, Ephraim E, Zielmann S, Crozier TA. Long-term effects of two different ventilatory modes on oxygenation in acute lung injury. Comparison of airway pressure release ventilation and volume-controlled inverse ratio ventilation. Am J Respir Crit Care Med. 1994;149:1550–1556. doi: 10.1164/ajrccm.149.6.8004312.
    1. Varpula T, Jousela I, Niemi R, Takkunen O, Pettila V. Combined effects of prone positioning and airway pressure release ventilation on gas exchange in patients with acute lung injury. Acta Anaesthesiol Scand. 2003;47:516–524. doi: 10.1034/j.1399-6576.2003.00109.x.
    1. Varpula T, Valta P, Niemi R, Takkunen O, Hynynen M, Pettila VV. Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol Scand. 2004;48:722–731. doi: 10.1111/j.0001-5172.2004.00411.x.
    1. Wrigge H, Zinserling J, Hering R, Schwalfenberg N, Stuber F, von Spiegel T, Schroeder S, Hedenstierna G, Putensen C. Cardiorespiratory effects of automatic tube compensation during airway pressure release ventilation in patients with acute lung injury. Anesthesiology. 2001;95:382–389. doi: 10.1097/00000542-200108000-00020.
    1. Maung AA, Luckianow G, Kaplan LJ. Lessons learned from airway pressure release ventilation. J Trauma Acute Care Surg. 2012;72:624–628. doi: 10.1097/TA.0b013e318247668f.
    1. Maung AA, Schuster KM, Kaplan LJ, Ditillo MF, Piper GL, Maerz LL, Lui FY, Johnson DC, Davis KA. Compared to conventional ventilation, airway pressure release ventilation may increase ventilator days in trauma patients. J Trauma Acute Care Surg. 2012;73:507–510. doi: 10.1097/TA.0b013e31825ff653.
    1. Testerman GM, Breitman I, Hensley S. Airway pressure release ventilation in morbidly obese surgical patients with acute lung injury and acute respiratory distress syndrome. Am Surg. 2013;79:242–246.
    1. Albert S, Kubiak BD, Vieau CJ, Roy SK, DiRocco J, Gatto LA, Young JL, Tripathi S, Trikha G, Lopez C, Nieman GF. Comparison of “open lung” modes with low tidal volumes in a porcine lung injury model. J Surg Res. 2011;166:e71–e81. doi: 10.1016/j.jss.2010.10.022.
    1. Andrews PL, Shiber JR, Jaruga-Killeen E, Roy S, Sadowitz B, O'Toole RV, Gatto LA, Nieman GF, Scalea T, Habashi NM. Early application of airway pressure release ventilation may reduce mortality in high-risk trauma patients: a systematic review of observational trauma ARDS literature. J Trauma Acute Care Surg. 2013;75:635–641. doi: 10.1097/TA.0b013e31829d3504.
    1. Arrindell EL, Jr, Krishnan R, van der Merwe M, Caminita F, Howard SC, Zhang J, Buddington RK. Lung volume recruitment in a preterm pig model of lung immaturity. Am J Physiol Lung Cell Mol Physiol. 2015;309:L1088–L1092.
    1. Davies SW, Leonard KL, Falls RK, Jr, Mageau RP, Efird JT, Hollowell JP, Trainor WE, 2nd, Kanaan HA, Hickner RC, Sawyer RG, Poulin NR, Waibel BH, Toschlog EA. Lung protective ventilation (ARDSNet) versus airway pressure release ventilation: ventilatory management in a combined model of acute lung and brain injury. J Trauma Acute Care Surg. 2015;78:240–249. doi: 10.1097/TA.0000000000000518.
    1. Kawaguchi A, Guerra GG, Duff JP, Ueta I, Fukushima R (2014) Hemodynamic changes in child acute respiratory distress syndrome with airway pressure release ventilation: a case series. Clin Respir J. doi:10.1111/crj.12155
    1. Kollisch-Singule M, Emr B, Smith B, Roy S, Jain S, Satalin J, Snyder K, Andrews P, Habashi N, Bates J, Marx W, Nieman G, Gatto LA. Mechanical breath profile of airway pressure release ventilation: the effect on alveolar recruitment and microstrain in acute lung injury. JAMA Surg. 2014;149:1138–1145. doi: 10.1001/jamasurg.2014.1829.
    1. Kollisch-Singule M, Emr B, Smith B, Ruiz C, Roy S, Meng Q, Jain S, Satalin J, Snyder K, Ghosh A, Marx W, Andrews P, Habashi N, Nieman G, Gatto LA. Airway pressure release ventilation reduces conducting airway micro-strain in lung injury. J Am Coll Surg. 2014;219:9. doi: 10.1016/j.jamcollsurg.2014.09.011.
    1. Kollisch-Singule M, Jain S, Andrews P, Smith BJ, Hamlington-Smith KL, Roy S, DiStefano D, Nuss E, Satalin J, Meng Q, Marx W, Bates JH, Gatto LA, Nieman GF, Habashi NM. Effect of airway pressure release ventilation on dynamic alveolar heterogeneity. JAMA Surg. 2016;151(1):64–72. doi: 10.1001/jamasurg.2015.2683.
    1. Roy S, Sadowitz B, Andrews P, Gatto LA, Marx W, Ge L, Wang G, Lin X, Dean DA, Kuhn M, Ghosh A, Satalin J, Snyder K, Vodovotz Y, Nieman G, Habashi N. Early stabilizing alveolar ventilation prevents acute respiratory distress syndrome: a novel timing-based ventilatory intervention to avert lung injury. J Trauma Acute Care Surg. 2012;73:391–400. doi: 10.1097/TA.0b013e31825c7a82.
    1. Walsh MA, Merat M, La Rotta G, Joshi P, Joshi V, Tran T, Jarvis S, Caldarone CA, Van Arsdell GS, Redington AN, Kavanagh BP. Airway pressure release ventilation improves pulmonary blood flow in infants after cardiac surgery. Crit Care Med. 2011;39:2599–2604. doi: 10.1097/CCM.0b013e318228297a.
    1. Yehya N, Topjian AA, Lin R, Berg RA, Thomas NJ, Friess SH. High frequency oscillation and airway pressure release ventilation in pediatric respiratory failure. Pediatr Pulmonol. 2014;49:707–715. doi: 10.1002/ppul.22853.
    1. Yoshida T, Rinka H, Kaji A, Yoshimoto A, Arimoto H, Miyaichi T, Kan M. The impact of spontaneous ventilation on distribution of lung aeration in patients with acute respiratory distress syndrome: airway pressure release ventilation versus pressure support ventilation. Anesth Analg. 2009;109:1892–1900. doi: 10.1213/ANE.0b013e3181bbd918.
    1. Roy SK, Emr B, Sadowitz B, Gatto LA, Ghosh A, Satalin JM, Snyder KP, Ge L, Wang G, Marx W, Dean D, Andrews P, Singh A, Scalea T, Habashi N, Nieman GF. Preemptive application of airway pressure release ventilation prevents development of acute respiratory distress syndrome in a rat traumatic hemorrhagic shock model. Shock. 2013;40:210–216. doi: 10.1097/SHK.0b013e31829efb06.
    1. Emr B, Gatto LA, Roy S, Satalin J, Ghosh A, Snyder K, Andrews P, Habashi N, Marx W, Ge L, Wang G, Dean DA, Vodovotz Y, Nieman G. Airway pressure release ventilation prevents ventilator-induced lung injury in normal lungs. JAMA Surg. 2013;148:1005–1012. doi: 10.1001/jamasurg.2013.3746.
    1. (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med 342:1301–1308
    1. Protti A, Andreis DT, Monti M, Santini A, Sparacino CC, Langer T, Votta E, Gatti S, Lombardi L, Leopardi O, Masson S, Cressoni M, Gattinoni L. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med. 2013;41:1046–1055. doi: 10.1097/CCM.0b013e31827417a6.
    1. Gattinoni L, Protti A, Caironi P, Carlesso E. Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med. 2010;38:S539–S548. doi: 10.1097/CCM.0b013e3181f1fcf7.
    1. Retamal J, Bergamini BC, Carvalho AR, Bozza FA, Borzone G, Borges JB, Larsson A, Hedenstierna G, Bugedo G, Bruhn A. Non-lobar atelectasis generates inflammation and structural alveolar injury in the surrounding healthy tissue during mechanical ventilation. Crit Care. 2014;18:505. doi: 10.1186/s13054-014-0505-1.
    1. Caironi P, Cressoni M, Chiumello D, Ranieri M, Quintel M, Russo SG, Cornejo R, Bugedo G, Carlesso E, Russo R, Caspani L, Gattinoni L. Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2010;181:578–586. doi: 10.1164/rccm.200905-0787OC.
    1. Rose L, Hawkins M. Airway pressure release ventilation and biphasic positive airway pressure: a systematic review of definitional criteria. Intensive Care Med. 2008;34:1766–1773. doi: 10.1007/s00134-008-1216-3.
    1. Facchin F, Fan E. Airway pressure release ventilation and high-frequency oscillatory ventilation: potential strategies to treat severe hypoxemia and prevent ventilator-induced lung injury. Respir Care. 2015;60:1509–1521. doi: 10.4187/respcare.04255.

Source: PubMed

3
Suscribir