Tyrosine Is Associated with Insulin Resistance in Longitudinal Metabolomic Profiling of Obese Children

Christian Hellmuth, Franca Fabiana Kirchberg, Nina Lass, Ulrike Harder, Wolfgang Peissner, Berthold Koletzko, Thomas Reinehr, Christian Hellmuth, Franca Fabiana Kirchberg, Nina Lass, Ulrike Harder, Wolfgang Peissner, Berthold Koletzko, Thomas Reinehr

Abstract

In obese children, hyperinsulinaemia induces adverse metabolic consequences related to the risk of cardiovascular and other disorders. Branched-chain amino acids (BCAA) and acylcarnitines (Carn), involved in amino acid (AA) degradation, were linked to obesity-associated insulin resistance, but these associations yet have not been studied longitudinally in obese children. We studied 80 obese children before and after a one-year lifestyle intervention programme inducing substantial weight loss >0.5 BMI standard deviation scores in 40 children and no weight loss in another 40 children. At baseline and after the 1-year intervention, we assessed insulin resistance (HOMA index), fasting glucose, HbA1c, 2 h glucose in an oral glucose tolerance test, AA, and Carn. BMI adjusted metabolite levels were associated with clinical markers at baseline and after intervention, and changes with the intervention period were evaluated. Only tyrosine was significantly associated with HOMA (p < 0.05) at baseline and end and with change during the intervention (p < 0.05). In contrast, ratios depicting BCAA metabolism were negatively associated with HOMA at baseline (p < 0.05), but not in the longitudinal profiling. Stratified analysis revealed that the children with substantial weight loss drove this association. We conclude that tyrosine alterations in association with insulin resistance precede alteration in BCAA metabolism. This trial is registered with ClinicalTrials.gov Identifier NCT00435734.

Figures

Figure 1
Figure 1
Associations of amino acids (AA) and acylcarnitines (Carn) with HOMA. Associations were calculated at baseline (x-axis) and for changes of AA and Carn to changes of HOMA during the intervention (y-axis) period in all children (n = 80). Displayed are the absolute log⁡(p) values of the applied obesity-independent robust regression models for both associations. AAA, aromatic amino acids; BCAA, branched-chain amino acids.
Figure 2
Figure 2
Estimates (95% CI) for associations of tyrosine with HOMA. Associations were calculated at baseline (Start) and after the intervention (End). Associations were calculated for all obese children (n = 80), children with substantial weight loss (WL, n = 40), and children without substantial weight loss (nWL, n = 40). 95% CI: 95% confidence interval.
Figure 3
Figure 3
Manhattan plot for associations of amino acids (AA) and acylcarnitines (Carn) with HOMA after the one-year lifestyle intervention for all obese children (a), children with substantial weight loss (b), and children without substantial weight loss (c). Plotted are the log10⁡(p) values and the sign is used to indicate the direction of the relationship, as assessed by the robust regression model. The area below or above the dashed lines contains metabolites that are significantly related to HOMA (p values < 0.05). AAA, aromatic amino acids; BCAA, branched-chain amino acids.

References

    1. Pulgarón E. R. Childhood obesity: a review of increased risk for physical and psychological comorbidities. Clinical Therapeutics. 2013;35(1):A18–A32. doi: 10.1016/j.clinthera.2012.12.014.
    1. Csábi G., Török K., Molnár D., Jeges S. Presence of metabolic cardiovascular syndrome in obese children. European Journal of Pediatrics. 2000;159(1-2):91–94. doi: 10.1007/pl00013812.
    1. Freedman D. S., Dietz W. H., Srinivasan S. R., Berenson G. S. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart study. Pediatrics. 1999;103(6, part 1):1175–1182. doi: 10.1542/peds.103.6.1175.
    1. Reinehr T., Andler W., Denzer C., Siegried W., Mayer H., Wabitsch M. Cardiovascular risk factors in overweight German children and adolescents: relation to gender, age and degree of overweight. Nutrition, Metabolism and Cardiovascular Diseases. 2005;15(3):181–187. doi: 10.1016/j.numecd.2004.06.003.
    1. Biro F. M., Wien M. Childhood obesity and adult morbidities. The American Journal of Clinical Nutrition. 2010;91(5):1499S–1505S. doi: 10.3945/ajcn.2010.28701b.
    1. Reinehr T., de Sousa G., Andler W. Longitudinal analyses among overweight, insulin resistance, and cardiovascular risk factors in children. Obesity Research. 2005;13(10):1824–1833. doi: 10.1038/oby.2005.222.
    1. Coughlin S. S. Toward a road map for global -omics: a primer on -omic technologies. American Journal of Epidemiology. 2014;180(12):1188–1195. doi: 10.1093/aje/kwu262.
    1. Sales N. M. R., Pelegrini P. B., Goersch M. C. Nutrigenomics: definitions and advances of this new science. Journal of Nutrition and Metabolism. 2014;2014:6. doi: 10.1155/2014/202759.202759
    1. Rauschert S., Uhl O., Koletzko B., Hellmuth C. Metabolomic biomarkers for obesity in humans: a short review. Annals of Nutrition and Metabolism. 2014;64(3-4):314–324. doi: 10.1159/000365040.
    1. Demine S., Reddy N., Renard P., Raes M., Arnould T. Unraveling biochemical pathways affected by mitochondrial dysfunctions using metabolomic approaches. Metabolites. 2014;4(3):831–878. doi: 10.3390/metabo4030831.
    1. Lustgarten M. S., Lyn Price L., Phillips E. M., Fielding R. A. Serum glycine is associated with regional body fat and insulin resistance in functionally-limited older adults. PLoS ONE. 2013;8(12) doi: 10.1371/journal.pone.0084034.e84034
    1. Perng W., Gillman M. W., Fleisch A. F., et al. Metabolomic profiles and childhood obesity. Obesity. 2014;22(12):2570–2578. doi: 10.1002/oby.20901.
    1. Newgard C. B., An J., Bain J. R., et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism. 2009;9(4):311–326. doi: 10.1016/j.cmet.2009.02.002.
    1. Mohorko N., Petelin A., Jurdana M., Biolo G., Jenko-Pražnikar Z. Elevated serum levels of cysteine and tyrosine: early biomarkers in asymptomatic adults at increased risk of developing metabolic syndrome. BioMed Research International. 2015;2015:14. doi: 10.1155/2015/418681.418681
    1. Tai E. S., Tan M. L. S., Stevens R. D., et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia. 2010;53(4):757–767. doi: 10.1007/s00125-009-1637-8.
    1. Wurtz P., Soininen P., Kangas A. J., et al. Branched-chain and aromatic amino acidsare predictors of insulinresistance in young adults. Diabetes Care. 2013;36(3):648–655. doi: 10.2337/dc12-0895.
    1. Fiehn O., Garvey W. T., Newman J. W., Lok K. H., Hoppel C. L., Adams S. H. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS ONE. 2010;5(12) doi: 10.1371/journal.pone.0015234.e15234
    1. Shah S. H., Crosslin D. R., Haynes C. S., et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 2012;55(2):321–330. doi: 10.1007/s00125-011-2356-5.
    1. Adams S. H. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Advances in Nutrition. 2011;2(6):445–456. doi: 10.3945/an.111.000737.
    1. Chen H.-H., Tseng Y. J., Wang S.-Y., et al. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. International Journal of Obesity. 2015;39(8):1241–1248. doi: 10.1038/ijo.2015.65.
    1. Tillin T., Hughes A. D., Wang Q., et al. Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study. Diabetologia. 2015;58(5):968–979. doi: 10.1007/s00125-015-3517-8.
    1. Würtz P., Mäkinen V.-P., Soininen P., et al. Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes. 2012;61(6):1372–1380. doi: 10.2337/db11-1355.
    1. Villarreal-Pérez J., Villarreal-Martínez J., Lavalle-González F., et al. Plasma and urine metabolic profiles are reflective of altered beta-oxidation in non-diabetic obese subjects and patients with type 2 diabetes mellitus. Diabetology & Metabolic Syndrome. 2014;6, article 129 doi: 10.1186/1758-5996-6-129.
    1. Wang T. J., Larson M. G., Vasan R. S., et al. Metabolite profiles and the risk of developing diabetes. Nature Medicine. 2011;17(4):448–453. doi: 10.1038/nm.2307.
    1. Newbern D., Balikcioglu P. G., Balikcioglu M., et al. Sex differences in biomarkers associated with insulin resistance in obese adolescents: metabolomic profiling and principal components analysis. Journal of Clinical Endocrinology and Metabolism. 2014;99(12):4730–4739. doi: 10.1210/jc.2014-2080.
    1. Butte N. F., Liu Y., Zakeri I. F., et al. Global metabolomic profiling targeting childhood obesity in the Hispanic population. The American Journal of Clinical Nutrition. 2015;102(2):256–267. doi: 10.3945/ajcn.115.111872.
    1. Lee A., Jang H. B., Ra M., et al. Prediction of future risk of insulin resistance and metabolic syndrome based on Korean boy's metabolite profiling. Obesity Research & Clinical Practice. 2014 doi: 10.1016/j.orcp.2014.10.220.
    1. Mccormack S. E., Shaham O., Mccarthy M. A., et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatric Obesity. 2013;8(1):52–61. doi: 10.1111/j.20i47-6t310.2012.y00087.x.
    1. Reinehr T., de Sousa G., Toschke A. M., Andler W. Long-term follow-up of cardiovascular disease risk factors in children after an obesity intervention. American Journal of Clinical Nutrition. 2006;84(3):490–496.
    1. Reinehr T., Hinney A., de Sousa G., Austrup F., Hebebrand J., Andler W. Definable somatic disorders in overweight children and adolescents. The Journal of Pediatrics. 2007;150(6):618.e5–622.e5. doi: 10.1016/j.jpeds.2007.01.042.
    1. Reinehr T., Kiess W., Kapellen T., Andler W. Insulin sensitivity among obese children and adolescents, according to degree of weight loss. Pediatrics. 2004;114(6):1569–1573. doi: 10.1542/peds.2003-0649-f.
    1. Reinehr T., Wolters B., Knop C., et al. Changes in the serum metabolite profile in obese children with weight loss. European Journal of Nutrition. 2015;54(2):173–181. doi: 10.1007/s00394-014-0698-8.
    1. Cole T. J. The LMS method for constructing normalized growth standards. European Journal of Clinical Nutrition. 1990;44(1):45–60.
    1. Kromeyer-Hauschild K., Wabitsch M., Kunze D., et al. Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschrift Kinderheilkunde. 2001;149(8):807–818. doi: 10.1007/s001120170107.
    1. American Diabetes Association. Type 2 diabetes in children and adolescents. Diabetes Care. 2000;23(3):381–389. doi: 10.2337/diacare.23.3.381.
    1. Matthews D. R., Hosker J. P., Rudenski A. S., Naylor B. A., Treacher D. F., Turner R. C. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419. doi: 10.1007/bf00280883.
    1. The R Project for Statistical Computing,
    1. Woo S. L. C., Lidsky A. S., Guttler F., Chandra T., Robson K. J. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature. 1983;306(5939):151–155. doi: 10.1038/306151a0.
    1. Kuhara T., Ikeda S., Ohneda A., Sasaki Y. Effects of intravenous infusion of 17 amino acids on the secretion of GH, glucagon, and insulin in sheep. American Journal of Physiology—Endocrinology and Metabolism. 1991;260(1):E21–E26.
    1. Michaliszyn S. F., Sjaarda L. A., Mihalik S. J., et al. Metabolomic profiling of amino acids and β-cell function relative to insulin sensitivity in youth. The Journal of Clinical Endocrinology & Metabolism. 2012;97(11):E2119–E2124. doi: 10.1210/jc.2012-2170.
    1. Mihalik S. J., Michaliszyn S. F., de las Heras J., et al. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes Care. 2012;35(3):605–611. doi: 10.2337/dc11-1577.
    1. Huffman K. M., Shah S. H., Stevens R. D., et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. 2009;32(9):1678–1683. doi: 10.2337/dc08-2075.
    1. Labrie F., Korner A. Effect of glucagon, insulin, and thyroxine on tyrosine transaminase and tryptophan pyrrolase of rat liver. Archives of Biochemistry and Biophysics. 1969;129(1):75–78. doi: 10.1016/0003-9861(69)90152-0.
    1. Spencer C. J., Heaton J. H., Gelehrter T. D., Richardson K. I., Garwin J. L. Insulin selectively slows the degradation rate of tyrosine aminotransferase. Journal of Biological Chemistry. 1978;253(21):7677–7682.
    1. Hargrove J. L., Trotter J. F., Ashline H. C., Krishnamurti P. V. Experimental diabetes increases the formation of sulfane by transsulfuration and inactivation of tyrosine aminotransferase in cytosols from rat liver. Metabolism. 1989;38(7):666–672. doi: 10.1016/0026-0495(89)90105-4.
    1. Fernstrom J. D. Branched-chain amino acids and brain function. Journal of Nutrition. 2005;135(supplement 6):1539S–1546S.
    1. Wahl S., Yu Z., Kleber M., et al. Childhood obesity is associated with changes in the serum metabolite profile. Obesity Facts. 2012;5(5):660–670. doi: 10.1159/000343204.
    1. Marchesini G., Bianchi G. P., Vilstrup H., Capelli M., Zoli M., Pisi E. Elimination of infused branched-chain amino-acids from plasma of patients with non-obese type 2 diabetes mellitus. Clinical Nutrition. 1991;10(2):105–113. doi: 10.1016/0261-5614(91)90096-u.
    1. Brosnan J. T., Brosnan M. E. Branched-chain amino acids: enzyme and substrate regulation. Journal of Nutrition. 2006;136(1, supplement):207S–211S.
    1. Serralde-Zúñiga A. E., Guevara-Cruz M., Tovar A. R., et al. Omental adipose tissue gene expression, gene variants, branched-chain amino acids, and their relationship with metabolic syndrome and insulin resistance in humans. Genes and Nutrition. 2014;9(6, article 431) doi: 10.1007/s12263-014-0431-5.
    1. Mardinoglu A., Kampf C., Asplund A., et al. Defining the human adipose tissue proteome to reveal metabolic alterations in obesity. Journal of Proteome Research. 2014;13(11):5106–5119. doi: 10.1021/pr500586e.
    1. O'Connell T. M. The complex role of branched chain amino acids in diabetes and cancer. Metabolites. 2013;3(4):931–945. doi: 10.3390/metabo3040931.
    1. Kirchberg F. F., Harder U., Weber M., et al. Dietary protein intake affects amino acid and acylcarnitine metabolism in infants aged 6 months. The Journal of Clinical Endocrinology & Metabolism. 2015;100(1):149–158. doi: 10.1210/jc.2014-3157.
    1. Hetenyi G., Jr., Anderson P. J., Raman M., Ferrarotto C. Gluconeogenesis from glycine and serine in fasted normal and diabetic rats. Biochemical Journal. 1988;253(1):27–32. doi: 10.1042/bj2530027.
    1. Gill J. M. R., Sattar N. Ceramides: a new player in the inflammation-insulin resistance paradigm? Diabetologia. 2009;52(12):2475–2477. doi: 10.1007/s00125-009-1546-x.
    1. Libman I. M., Barinas-Mitchell E., Bartucci A., Robertson R., Arslanian S. Reproducibility of the oral glucose tolerance test in overweight children. Journal of Clinical Endocrinology and Metabolism. 2008;93(11):4231–4237. doi: 10.1210/jc.2008-0801.
    1. Kleber M., deSousa G., Papcke S., Wabitsch M., Reinehr T. Impaired glucose tolerance in obese white children and adolescents: three to five year follow-up in untreated patients. Experimental and Clinical Endocrinology and Diabetes. 2011;119(3):172–176. doi: 10.1055/s-0030-1263150.
    1. Kleber M., Lass N., Papcke S., Wabitsch M., Reinehr T. One-year follow-up of untreated obese white children and adolescents with impaired glucose tolerance: high conversion rate to normal glucose tolerance. Diabetic Medicine. 2010;27(5):516–521. doi: 10.1111/j.1464-5491.2010.02991.x.
    1. Uwaifo G. I., Fallon E. M., Chin J., Elberg J., Parikh S. J., Yanovski J. A. Indices of insulin action, disposal, and secretion derived from fasting samples and clamps in normal glucose-tolerant black and white children. Diabetes Care. 2002;25(11):2081–2087. doi: 10.2337/diacare.25.11.2081.

Source: PubMed

3
Suscribir