Association of Mitochondrial Dysfunction and Fatigue: A Review of the Literature

Kristin Filler, Debra Lyon, James Bennett, Nancy McCain, Ronald Elswick, Nada Lukkahatai, Leorey N Saligan, Kristin Filler, Debra Lyon, James Bennett, Nancy McCain, Ronald Elswick, Nada Lukkahatai, Leorey N Saligan

Abstract

Fatigue is often described by patients as a lack of energy, mental or physical tiredness, diminished endurance, and prolonged recovery after physical activity. Etiologic mechanisms underlying fatigue are not well understood; however, fatigue is a hallmark symptom of mitochondrial disease, making mitochondrial dysfunction a putative biological mechanism for fatigue. Therefore, this review examined studies that investigated the association of markers of mitochondrial dysfunction with fatigue and proposes possible research directions to enhance understanding of the role of mitochondrial dysfunction in fatigue. A thorough search using PubMed, Scopus, Web of Science, and Embase databases returned 1,220 articles. After application of inclusion and exclusion criteria, a total of 25 articles meeting eligibility criteria were selected for full review. Dysfunctions in the mitochondrial structure, mitochondrial function (mitochondrial enzymes and oxidative/nitrosative stress), mitochondrial energy metabolism (ATP production and fatty acid metabolism), immune response, and genetics were investigated as potential contributors to fatigue. Carnitine was the most investigated mitochondrial function marker. Dysfunctional levels were reported in all the studies investigating carnitine; however, the specific type of carnitine that was dysfunctional varied. Genetic profiles were the second most studied mitochondrial parameter. Six common pathways were proposed: metabolism, energy production, protein transport, mitochondrial morphology, central nervous system dysfunction and post-viral infection. Coenzyme Q10 was the most commonly investigated mitochondrial enzyme. Low levels of Coenzyme Q10 were consistently associated with fatigue. Potential targets for further investigation were identified as well as gaps in the current literature.

Keywords: fatigue; mitochondria; review.

Figures

Graphical abstract
Graphical abstract

References

    1. Alexander N.B., Taffet G.E., Horne F.M., Eldadah B.A., Ferrucci L., Nayfield S., Studenski S. Bedside-to-Bench conference: research agenda for idiopathic fatigue and aging. J. Am. Geriatr. Soc. 2010;58(5):967–975.
    1. Behan W.M.H., More I.A.R., Downie I., Gow J.W. Mitochondrial studies in the chronic fatigue syndrome. EOS Riv. Immunol. Immunofarmacol. 1995;15(1–2):36–39.
    1. Behan W.M.H., Holt I.J., Kay D.H., Moonie P. In vitro study of muscle aerobic metabolism in chronic fatigue syndrome. J. Chron. Fatigue Syndr. 1999;5(1):3–16.
    1. Blackstone C., Chang C.R. Mitochondria unite to survive. Nat. Cell Biol. 2011;13(5):521–522.
    1. Booth N.E., Myhill S., McLaren-Howard J. Mitochondrial dysfunction and the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) Int. J. Clin. Exp. Med. 2012;5(3):208–220.
    1. Cohen B.H. Mitochondrial cytopathies: a primer. 2000. Retrieved from:
    1. Cohen B.H., Gold D.R. Mitochondrial cytopathy in adults: what we know so far. Cleve. Clin. J. Med. 2001;68(7):625–626. (629–642)
    1. Duchen M.R. Roles of mitochondria in health and disease. Diabetes. 2004;53(Suppl. 1):S96–S102.
    1. Edwards R.H., Gibson H., Clague J.E., Helliwell T. Muscle histopathology and physiology in chronic fatigue syndrome. CIBA Found. Symp. 1993;173:102–117. (discussion 117–131)
    1. Fukazawa T., Sasaki H., Kikuchi S., Hamada T., Tashiro K. Serum carnitine and disabling fatigue in multiple sclerosis. Psychiatry Clin. Neurosci. 1996;50(6):323–325.
    1. Hardy S.E., Studenski S.A. Qualities of fatigue and associated chronic conditions among older adults. J. Pain Symptom Manag. 2010;39(6):1033–1042.
    1. Hokama Y., Campora C.E., Hara C., Kuribayashi T., Le Huynh D., Yabusaki K. Anticardiolipin antibodies in the sera of patients with diagnosed chronic fatigue syndrome. J. Clin. Lab. Anal. 2009;23(4):210–212.
    1. Hokama Y., Empey-Campora C., Hara C., Higa N., Siu N., Lau R., Yabusaki K. Acute phase phospholipids related to the cardiolipin of mitochondria in the sera of patients with chronic fatigue syndrome (CFS), chronic Ciguatera fish poisoning (CCFP), and other diseases attributed to chemicals, Gulf War, and marine toxins. J. Clin. Lab. Anal. 2008;22(2):99–105.
    1. Horvath R. Update on clinical aspects and treatment of selected vitamin-responsive disorders II (riboflavin and CoQ10) J. Inherit. Metab. Dis. 2012;35:679–687.
    1. Hsiao C.P., Wang D., Kaushal A., Saligan L. Mitochondria-related gene expression changes are associated with fatigue in patients with nonmetastatic prostate cancer receiving external beam radiation therapy. Cancer Nurs. 2013;36(3):189–197.
    1. Jason L.A., Evans M., Brown M., Porter N. What is fatigue? Pathological and nonpathological fatigue. PM R. 2010;2(5):327–331.
    1. Kaushik N., Fear D., Richards S.C., McDermott C.R., Nuwaysir E.F., Kellam P., Kerr J.R. Gene expression in peripheral blood mononuclear cells from patients with chronic fatigue syndrome. J. Clin. Pathol. 2005;58(8):826–832.
    1. Kuratsune H., Yamaguti K., Takahashi M., Misaki H., Tagawa S., Kitani T. Acylcarnitine deficiency in chronic fatigue syndrome. Clin. Infect. Dis. 1994;18(Suppl. 1):S62–S67.
    1. Kurup R.K., Kurup P.A. Hypothalamic digoxin, cerebral chemical dominance and myalgic encephalomyelitis. Int. J. Neurosci. 2003;113(5):683–701.
    1. Kurup R.K., Kurup P.A. Isoprenoid pathway dysfunction in chronic fatigue syndrome. Acta Neuropsychiatr. 2003;15(5):266–273.
    1. Littarru G.P., Tiano L. Clinical aspects of coenzyme Q10: an update. Nutrition. 2010;26:250–254.
    1. Maes M., Mihaylova I., Kubera M., Uytterhoeven M., Vrydags N., Bosmans E. Coenzyme Q10 deficiency in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in ME/CFS due to cardiovascular disorder. Neuro Endocrinol. Lett. 2009;30(4):470–476.
    1. Maes M., Mihaylova I., Kubera M., Uytterhoeven M., Vrydags N., Bosmans E. Lower plasma Coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness. Neuroendocrinol. Lett. 2009;30(4):462–469.
    1. McArdle A., McArdle F., Jackson M.J., Page S.F., Fahal I., Edwards R.H. Investigation by polymerase chain reaction of enteroviral infection in patients with chronic fatigue syndrome. Clin. Sci. (Lond.) 1996;90(4):295–300.
    1. Myhill S., Booth N.E., McLaren-Howard J. Chronic fatigue syndrome and mitochondrial dysfunction. Int. J. Clin. Exp. Med. 2009;2(1):1–16.
    1. Nunnari J., Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–1159.
    1. Pieczenik S.R., Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp. Mol. Pathol. 2007;83(1):84–92.
    1. Pietrangelo T., Mancinelli R., Toniolo L., Montanari G., Vecchiet J., Fano G., Fulle S. Transcription profile analysis of vastus lateralis muscle from patients with chronic fatigue syndrome. Int. J. Immunopathol. Pharmacol. 2009;22(3):795–807.
    1. Plioplys A.V., Plioplys S. Electron-microscopic investigation of muscle mitochondria in chronic fatigue syndrome. Neuropsychobiology. 1995;32(4):175–181.
    1. Plioplys A.V., Plioplys S. Serum levels of carnitine in chronic fatigue syndrome: clinical correlates. Neuropsychobiology. 1995;32(3):132–138.
    1. Potgieter M., Pretorius E., Pepper M. Primary and secondary coenzyme Q10 deficiency: the role of therapeutic supplementation. Nutr. Rev. 2013;71:180–188.
    1. Read C.Y., Calnan R.J. Mitochondrial disease: beyond etiology unknown. J. Pediatr. Nurs. 2000;15(4):232–241.
    1. Reuter S.E., Evans A.M. Long-chain acylcarnitine deficiency in patients with chronic fatigue syndrome. Potential involvement of altered carnitine palmitoyltransferase-I activity. J. Intern. Med. 2011;270(1):76–84.
    1. Reynolds T. From small things. BMJ. 2007;335(7623):747–748.
    1. Rosenthal T.C., Majeroni B.A., Pretorius R., Malik K. Fatigue: an overview. Am. Fam. Physician. 2008;78(10):1173–1179.
    1. Segal B.M., Thomas W., Zhu X., Diebes A., McElvain G., Baechler E., Gross M. Oxidative stress and fatigue in systemic lupus erythematosus. Lupus. 2012;21:984–992.
    1. Smits B., van den Heuvel L., Knoop H., Kusters B., Janssen A., Borm G., van Engelen B. Mitochondrial enzymes discriminate between mitochondrial disorders and chronic fatigue syndrome. Mitochondrion. 2011;11(5):735–738.
    1. Soetekouw P., Wevers R.A., Vreken P., Elving L.D., Janssen A.J.M., van der Veen Y., van der Meer J.W.M. Normal carnitine levels in patients with chronic fatigue syndrome. [Article] Neth. J. Med. 2000;57(1):20–24.
    1. Swain M.G. Fatigue in chronic disease. Clin. Sci. (Lond.) 2000;99(1):1–8.
    1. Tymoczko J., Berg J., Stryer L. W. H. Freeman and Company; New York, NY: 2010. Biochemistry: A Short Course.
    1. Vernon S.D., Whistler T., Cameron B., Hickie I.B., Reeves W.C., Lloyd A. Preliminary evidence of mitochondrial dysfunction associated with post-infective fatigue after acute infection with Epstein Barr virus. BMC Infect. Dis. 2006;6:15.
    1. Voss J.G., Dobra A., Morse C., Kovacs J.A., Danner R.L., Munson P.J., Dalakas M.C. Fatigue-related gene networks identified in CD14(+) cells isolated from HIV-infected patients-part I: research findings. Biol. Res. Nurs. 2013;15(2):137–151.
    1. Youle R.J., van der Bliek A.M. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062–1065.
    1. Norheim K., Jonsson G., Omdal R. Biological mechanisms of chronic fatigue. Rheumatology. 2011;50:1009–1118.
    1. Verzijl H.T., van Engelen B.G., Luyten J.A., Steenbergen G.C., van den Heuvel L.P., ter Laak H.J., Padberg G.W., Wevers R.A. Annals of Neurology. 1998;44(1):140–143.

Source: PubMed

3
Suscribir