Super-Resolution Imaging with Ultrasound for Visualization of the Renal Microvasculature in Rats Before and After Renal Ischemia: A Pilot Study

Sofie Bech Andersen, Iman Taghavi, Carlos Armando Villagómez Hoyos, Stinne Byrholdt Søgaard, Fredrik Gran, Lars Lönn, Kristoffer Lindskov Hansen, Jørgen Arendt Jensen, Michael Bachmann Nielsen, Charlotte Mehlin Sørensen, Sofie Bech Andersen, Iman Taghavi, Carlos Armando Villagómez Hoyos, Stinne Byrholdt Søgaard, Fredrik Gran, Lars Lönn, Kristoffer Lindskov Hansen, Jørgen Arendt Jensen, Michael Bachmann Nielsen, Charlotte Mehlin Sørensen

Abstract

In vivo monitoring of the microvasculature is relevant since diseases such as diabetes, ischemia, or cancer cause microvascular impairment. Super-resolution ultrasound imaging allows in vivo examination of the microvasculature by detecting and tracking sparsely distributed intravascular microbubbles over a minute-long period. The ability to create detailed images of the renal vasculature of Sprague-Dawley rats using a modified clinical ultrasound platform was investigated in this study. Additionally, we hypothesized that early ischemic damage to the renal microcirculation could be visualized. After a baseline scan of the exposed kidney, 10 rats underwent clamping of the renal vein (n = 5) or artery (n = 5) for 45 min. The kidneys were rescanned at the onset of clamp release and after 60 min of reperfusion. Using a processing pipeline for tissue motion compensation and microbubble tracking, super-resolution images with a very high level of detail were constructed. Image filtration allowed further characterization of the vasculature by isolating specific vessels such as the ascending vasa recta with a 15-20 μm diameter. Using the super-resolution images alone, it was only possible for six assessors to consistently distinguish the healthy renal microvasculature from the microvasculature at the onset of vein clamp release. Future studies will aim at attaining quantitative estimations of alterations in the renal microvascular blood flow using super-resolution ultrasound imaging.

Keywords: Sprague-Dawley; kidney; microcirculation; rats; reperfusion injury; super-resolution ultrasound imaging; vasa recta.

Conflict of interest statement

C.A.V.H. and F.G. are employed at BK Medical ApS, Herlev, Denmark. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Experiment overview of the ischemia-reperfusion intervention. AM = amplitude modulation, f0 = center frequency of the probe, fr = frame rate, MI = mechanical index, SR = super-resolution, MB = microbubble.
Figure 2
Figure 2
(AC) Super-resolution images (log-scaled, i.e., color bar shows the value of intensity after logarithmic compression, ranging from 0~30 dB, and intensity corresponds to the number of microbubbles) of the healthy rat renal microvasculature. (A) There is a clear distinction between the dense cortical (CO) microvascular network and the vasa recta of the outer medulla (OM) and inner medulla (IM), leading down to the papilla (PA). Even though the scans were performed under the same conditions, the images show how the number of microbubbles varied between the rats, indicated by the higher intensity on image (B) (average of 117 detected microbubbles/frame) compared with image (C) (average of 70 detected microbubbles/frame). (D) Ex vivo magnetic resonance T1 contrast-enhanced image of another rat kidney for comparison. The kidneys measure approximately 2 cm in craniocaudal length and 1 cm in the medial-lateral direction. Scale bar: 2 mm.
Figure 3
Figure 3
Super-resolution microbubble track maps. (A) Unfiltered microbubble track map. The color of the wheel indicates microbubble flow direction, and the color brightness indicates MB flow velocity. The image shows the opposite flow of the paired arteries and veins of the renal vascular tree. (B) Without filtering, this velocity map (from another rat) contains a high number of tracks (343,939). (C) The microbubble track map from (B) filtered to increase the robustness of the included tracks and highlight the long straight vasa recta, thereby allowing a distinction between the descending (green/blue) and ascending (red) vasa recta (insert). (D) Another way to filter these maps is by direction. This image is filtered to show microbubbles with a direction going from left to right, leaving the descending vasa recta visible on the left side of the medulla, and the ascending visible on the right side. Scale bar: 2 mm.
Figure 4
Figure 4
(A) Super-resolution images (log-scaled, i.e., color bar shows the value of intensity after logarithmic compression, ranging from 0~30 dB, and intensity corresponds to the number of microbubbles) of three rat kidneys before and after clamping of the renal vein. (B) Super-resolution images of three rat kidneys before and after clamping of the renal artery. Scale bar: 10 mm.
Figure 5
Figure 5
(A) Super-resolution (log-scaled) and power Doppler images of two rat kidneys before and after clamping of the renal vein. (B) Super-resolution (log-scaled) and power Doppler images of two rat kidneys before and after clamping of the renal artery. In these examples, all the super-resolution images showed a complete refilling of the microvascular bed after 60 min of reperfusion. The power Doppler scans from all animals showed a decreased signal in the cortex after 60 min of reperfusion compared with baseline. Scale bar: 10 mm.
Figure 6
Figure 6
Hematoxylin and eosin staining of the renal cortex from three rats. (A) Control. (B) After renal artery clamping. (C) After renal vein clamping. The black arrows show intratubular cast formation in the tubules. The yellow arrow shows erythrocytes accumulated in the renal interstitial space around a glomerulus. Scale bar: 100 μm.

References

    1. Maric-Bilkan C., Flynn E.R., Chade A.R. Microvascular disease precedes the decline in renal function in the streptozotocin-induced diabetic rat. Am. J. Physiol. Physiol. 2012;302:F308–F315. doi: 10.1152/ajprenal.00421.2011.
    1. Basile D.P., Donohoe D., Roethe K., Osborn J.L. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am. J. Physiol. Ren. Physiol. 2001;281:F887–F899. doi: 10.1152/ajprenal.00050.2001.
    1. Ehling J., Bábícková J., Gremse F., Klinkhammer B.M., Baetke S., Knuechel R., Kiessling F., Floege J., Lammers T., Boor P. Quantitative Micro-Computed Tomography Imaging of Vascular Dysfunction in Progressive Kidney Diseases. J. Am. Soc. Nephrol. 2016;27:520–532. doi: 10.1681/ASN.2015020204.
    1. Beckman J.A., Duncan M.S., Damrauer S.M., Wells Q.S., Barnett J.V., Wasserman D.H., Bedimo R.J., Butt A.A., Marconi V.C., Sico J.J., et al. Microvascular Disease, Peripheral Artery Disease, and Amputation. Circulation. 2019;140:449–458. doi: 10.1161/CIRCULATIONAHA.119.040672.
    1. Ehling J., Theek B., Gremse F., Baetke S., Möckel D., Maynard J., Ricketts S.A., Grüll H., Neeman M., Knuechel R., et al. Micro-CT imaging of tumor angiogenesis: Quantitative measures describing micromorphology and vascularization. Am. J. Pathol. 2014;184:431–441. doi: 10.1016/j.ajpath.2013.10.014.
    1. Demidov V., Maeda A., Sugita M., Madge V., Sadanand S., Flueraru C., Vitkin I.A. Preclinical longitudinal imaging of tumor microvascular radiobiological response with functional optical coherence tomography. Sci. Rep. 2018;8:38. doi: 10.1038/s41598-017-18635-w.
    1. Jonasson H., Bergstrand S., Fredriksson I., Larsson M., Östgren C.J., Strömberg T. Normative data and the influence of age and sex on microcirculatory function in a middle-aged cohort: Results from the SCAPIS study. Am. J. Physiol. Heart Circ. Physiol. 2020;318:H908–H915. doi: 10.1152/ajpheart.00668.2019.
    1. Errico C., Pierre J., Pezet S., Desailly Y., Lenkei Z., Couture O., Tanter M. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 2015;527:499–502. doi: 10.1038/nature16066.
    1. Christensen-Jeffries K., Browning R.J., Tang M.X., Dunsby C., Eckersley R.J. In Vivo Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles. IEEE Trans. Med. Imaging. 2015;34:433–440. doi: 10.1109/TMI.2014.2359650.
    1. Foiret J., Zhang H., Ilovitsh T., Mahakian L., Tam S., Ferrara K.W. Ultrasound localization microscopy to image and assess microvasculature in a rat kidney. Sci. Rep. 2017;7:13662. doi: 10.1038/s41598-017-13676-7.
    1. Yu J., Lavery L., Kim K. Super-resolution ultrasound imaging method for microvasculature in vivo with a high temporal accuracy. Sci. Rep. 2018;8:13918. doi: 10.1038/s41598-018-32235-2.
    1. Zhu J., Rowland E.M., Harput S., Riemer K., Leow C.H., Clark B., Cox K., Lim A., Christensen-Jeffries K., Zhang G., et al. 3D Super-Resolution US Imaging of Rabbit Lymph Node Vasculature in Vivo by Using Microbubbles. Radiology. 2019;291:642–650. doi: 10.1148/radiol.2019182593.
    1. Kierski T.M., Espindola D., Newsome I.G., Cherin E., Yin J., Foster F.S., Demore C.E.M., Pinton G.F., Dayton P.A. Superharmonic Ultrasound for Motion-Independent Localization Microscopy: Applications to Microvascular Imaging from Low to High Flow Rates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020;67:957–967. doi: 10.1109/TUFFC.2020.2965767.
    1. Opacic T., Dencks S., Theek B., Piepenbrock M., Ackermann D., Rix A., Lammers T., Stickeler E., Delorme S., Schmitz G., et al. Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization. Nat. Commun. 2018;9:1527. doi: 10.1038/s41467-018-03973-8.
    1. Lin F., Shelton S.E., Espíndola D., Rojas J.D., Pinton G., Dayton P.A. 3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound. Theranostics. 2017;7:196–204. doi: 10.7150/thno.16899.
    1. Lowerison M.R., Huang C., Lucien F., Chen S., Song P. Ultrasound localization microscopy of renal tumor xenografts in chicken embryo is correlated to hypoxia. Sci. Rep. 2020;10:2478. doi: 10.1038/s41598-020-59338-z.
    1. Chen Q., Yu J., Rush B.M., Stocker S.D., Tan R.J., Kim K. Ultrasound super-resolution imaging provides a noninvasive assessment of renal microvasculature changes during mouse acute kidney injury. Kidney Int. 2020;98:355–365. doi: 10.1016/j.kint.2020.02.011.
    1. Moffat D.B., Fourman J. A vascular pattern of the rat kidney. 1963. J. Am. Soc. Nephrol. 2001;12:624–632.
    1. Cao W., Cui S., Yang L., Wu C., Liu J., Yang F., Liu Y., Bin J., Hou F.F. Contrast-Enhanced Ultrasound for Assessing Renal Perfusion Impairment and Predicting Acute Kidney Injury to Chronic Kidney Disease Progression. Antioxid. Redox Signal. 2017;27:1397–1411. doi: 10.1089/ars.2017.7006.
    1. Fischer K., Meral F.C., Zhang Y., Vangel M.G., Jolesz F.A., Ichimura T., Bonventre J.V. High-resolution renal perfusion mapping using contrast-enhanced ultrasonography in ischemia-reperfusion injury monitors changes in renal microperfusion. Kidney Int. 2016;89:1388–1398. doi: 10.1016/j.kint.2016.02.004.
    1. Mahoney M., Sorace A., Warram J., Samuel S., Hoyt K. Volumetric contrast-enhanced ultrasound imaging of renal perfusion. J. Ultrasound Med. 2014;33:1427–1437. doi: 10.7863/ultra.33.8.1427.
    1. Yamamoto T., Tada T., Brodsky S.V., Tanaka H., Noiri E., Kajiya F., Goligorsky M.S. Intravital videomicroscopy of peritubular capillaries in renal ischemia. Am. J. Physiol. Physiol. 2002;282:F1150–F1155. doi: 10.1152/ajprenal.00310.2001.
    1. Hingot V., Errico C., Heiles B., Rahal L., Tanter M., Couture O. Microvascular flow dictates the compromise between spatial resolution and acquisition time in Ultrasound Localization Microscopy. Sci. Rep. 2019;9:2456. doi: 10.1038/s41598-018-38349-x.
    1. Lohmaier S., Ghanem A., Veltmann C., Sommer T., Bruce M., Tiemann K. In vitro and in vivo studies on continuous echo-contrast application strategies using SonoVue in a newly developed rotating pump setup. Ultrasound Med. Biol. 2004;30:1145–1151. doi: 10.1016/j.ultrasmedbio.2004.07.019.
    1. Owji S.M., Nikeghbal E., Moosavi S.M. Comparison of ischaemia-reperfusion-induced acute kidney injury by clamping renal arteries, veins or pedicles in anaesthetized rats. Exp. Physiol. 2018;103:1390–1402. doi: 10.1113/EP087140.
    1. Park Y., Hirose R., Dang K., Xu F., Behrends M., Tan V., Roberts J.P., Niemann C.U. Increased severity of renal ischemia-reperfusion injury with venous clamping compared to arterial clamping in a rat model. Surgery. 2008;143:243–251. doi: 10.1016/j.surg.2007.07.041.
    1. Jensen J.A., Andersen S.B., Hoyos C.A.V., Hansen K.L., Sørensen C.M., Nielsen M.B. Tissue Motion Estimation and Correction in Super Resolution Imaging; Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS); Glasgow, UK. 6–9 October 2019; pp. 1–4.
    1. Nitta N., Takakusagi Y., Kokuryo D., Shibata S., Tomita A., Higashi T., Aoki I., Harada M. Intratumoral evaluation of 3D microvasculature and nanoparticle distribution using a gadolinium-dendron modified nano-liposomal contrast agent with magnetic resonance micro-imaging. Nanomed. Nanotechnol. Biol. Med. 2018;14:1315–1324. doi: 10.1016/j.nano.2018.03.006.
    1. Yoldas A., Dayan M.O. Morphological Characteristics of Renal Artery and Kidney in Rats. Sci. World J. 2014;2014:468982. doi: 10.1155/2014/468982.
    1. Wagner R., Van Loo D., Hossler F., Czymmek K., Pauwels E., Van Hoorebeke L. High-Resolution Imaging of Kidney Vascular Corrosion Casts with Nano-CT. Microsc. Microanal. 2011;17:215–219. doi: 10.1017/S1431927610094201.
    1. Yamamoto K., Wilson D.R., Baumal R. Blood supply and drainage of the outer medulla of the rat kidney: Scanning electron microscopy of microvascular casts. Anat. Rec. 1984;210:273–277. doi: 10.1002/ar.1092100202.
    1. Holliger C., Lemley K.V., Schmitt S.L., Thomas F.C., Robertson C.R., Jamison R.L. Direct Determination of Vasa Recta Blood Flow in the Rat Renal Papilla. Circ. Res. 1983;53:401–413. doi: 10.1161/01.RES.53.3.401.
    1. Morel D.R., Schwieger I., Hohn L., Terrettaz J., Llull J.B., Cornioley Y.A., Schneider M. Human Pharmacokinetics and Safety Evaluation of SonoVueTM, a New Contrast Agent for Ultrasound Imaging. Investig. Radiol. 2000;35:80–85. doi: 10.1097/00004424-200001000-00009.
    1. Schneider M., Broillet A., Tardy I., Pochon S., Bussat P., Bettinger T., Helbert A., Costa M., Tranquart F. Use of Intravital Microscopy to Study the Microvascular Behavior of Microbubble-Based Ultrasound Contrast Agents. Microcirculation. 2012;19:245–259. doi: 10.1111/j.1549-8719.2011.00152.x.
    1. Yang Y., He Q., Zhang H., Qiu L., Qian L., Lee F.-F., Liu Z., Luo J. Assessment of Diabetic Kidney Disease Using Ultrasound Localization Microscopy: An in Vivo Feasibility Study in Rats; Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS); Kobe, Japan. 22–25 October 2018; pp. 1–4.
    1. Vetterlein F., Pethö A., Schmidt G. Distribution of capillary blood flow in rat kidney during postischemic renal failure. Am. J. Physiol. 1986;251:H510–H519. doi: 10.1152/ajpheart.1986.251.3.H510.
    1. Conesa E.L., Valero F., Nadal J.C., Fenoy F.J., López B., Arregui B., Salom M.G. N-acetyl-l-cysteine improves renal medullary hypoperfusion in acute renal failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001;281:R730–R737. doi: 10.1152/ajpregu.2001.281.3.R730.
    1. Regner K.R., Zuk A., Van Why S.K., Shames B.D., Ryan R.P., Falck J.R., Manthati V.L., McMullen M.E., Ledbetter S.R., Roman R.J. Protective effect of 20-HETE analogues in experimental renal ischemia reperfusion injury. Kidney Int. 2009;75:511–517. doi: 10.1038/ki.2008.600.
    1. Chawla L.S., Amdur R.L., Amodeo S., Kimmel P.L., Palant C.E. The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int. 2011;79:1361–1369. doi: 10.1038/ki.2011.42.
    1. Wang H.-J., Varner A., AbouShwareb T., Atala A., Yoo J.J. Ischemia/Reperfusion-Induced Renal Failure in Rats as a Model for Evaluating Cell Therapies. Ren. Fail. 2012;34:1324–1332. doi: 10.3109/0886022X.2012.725292.
    1. Scurt F.G., Menne J., Brandt S., Bernhardt A., Mertens P.R., Haller H., Chatzikyrkou C., Ito S., Izzo J.L., Januszewicz A., et al. Systemic Inflammation Precedes Microalbuminuria in Diabetes. Kidney Int. Rep. 2019;4:1373–1386. doi: 10.1016/j.ekir.2019.06.005.
    1. Kasoji S.K., Rivera J.N., Gessner R.C., Chang S.X., Dayton P.A. Early assessment of tumor response to radiation therapy using high-resolution quantitative microvascular ultrasound imaging. Theranostics. 2018;8:156–168. doi: 10.7150/thno.19703.
    1. Hlushchuk R., Zubler C., Barré S., Correa Shokiche C., Schaad L., Röthlisberger R., Wnuk M., Daniel C., Khoma O., Tschanz S.A., et al. Cutting-edge microangio-CT: New dimensions in vascular imaging and kidney morphometry. Am. J. Physiol. Physiol. 2018;314:F493–F499. doi: 10.1152/ajprenal.00099.2017.
    1. Perrien D.S., Saleh M.A., Takahashi K., Madhur M.S., Harrison D.G., Harris R.C., Takahashi T. Novel methods for microCT-based analyses of vasculature in the renal cortex reveal a loss of perfusable arterioles and glomeruli in eNOS-/- mice. BMC Nephrol. 2016;17:24. doi: 10.1186/s12882-016-0235-5.
    1. Kawai K., Morikawa T. The effect of formalin fixation on the size of pelvic sidewall lymph nodes. Int. J. Colorectal Dis. 2018;33:1493–1495. doi: 10.1007/s00384-018-3103-x.
    1. Tran H., Jan N.J., Hu D., Voorhees A., Schuman J.S., Smith M.A., Wollstein G., Sigal I.A. Formalin Fixation and Cryosectioning Cause only Minimal Changes in Shape or Size of Ocular Tissues. Sci. Rep. 2017;7:12065. doi: 10.1038/s41598-017-12006-1.
    1. Pöschinger T., Renner A., Eisa F., Dobosz M., Strobel S., Weber T.G., Brauweiler R., Kalender W.A., Scheuer W. Dynamic Contrast-Enhanced Micro–Computed Tomography Correlates With 3-Dimensional Fluorescence Ultramicroscopy in Antiangiogenic Therapy of Breast Cancer Xenografts. Investig. Radiol. 2014;49:445–456. doi: 10.1097/RLI.0000000000000038.
    1. Pohlmann A., Hentschel J., Fechner M., Hoff U., Bubalo G., Arakelyan K., Cantow K., Seeliger E., Flemming B., Waiczies H., et al. High Temporal Resolution Parametric MRI Monitoring of the Initial Ischemia/Reperfusion Phase in Experimental Acute Kidney Injury. PLoS ONE. 2013;8:e57411. doi: 10.1371/journal.pone.0057411.
    1. Starosolski Z., Villamizar C.A., Rendon D., Paldino M.J., Milewicz D.M., Ghaghada K.B., Annapragada A.V. Ultra High-Resolution In vivo Computed Tomography Imaging of Mouse Cerebrovasculature Using a Long Circulating Blood Pool Contrast Agent. Sci. Rep. 2015;5:10178. doi: 10.1038/srep10178.
    1. Miller D.L., Averkiou M.A., Brayman A.A., Everbach E.C., Holland C.K., Wible J.H., Wu J. Bioeffects Considerations for Diagnostic Ultrasound Contrast Agents. J. Ultrasound Med. 2008;27:611–632. doi: 10.7863/jum.2008.27.4.611.
    1. Tang M.X., Mulvana H., Gauthier T., Lim A.K.P., Cosgrove D.O., Eckersley R.J., Stride E. Quantitative contrast-enhanced ultrasound imaging: A review of sources of variability. Interface Focus. 2011;1:520–539. doi: 10.1098/rsfs.2011.0026.
    1. Demené C., Payen T., Dizeux A., Barrois G., Gennisson J.-L., Bridal L., Tanter M. 3-D Longitudinal Imaging of Tumor Angiogenesis in Mice in Vivo Using Ultrafast Doppler Tomography. Ultrasound Med. Biol. 2019;45:1284–1296. doi: 10.1016/j.ultrasmedbio.2018.12.010.
    1. Huang C., Lowerison M.R., Lucien F., Gong P., Wang D., Song P., Chen S. Noninvasive Contrast-Free 3D Evaluation of Tumor Angiogenesis with Ultrasensitive Ultrasound Microvessel Imaging. Sci. Rep. 2019;9:4907. doi: 10.1038/s41598-019-41373-0.
    1. Jensen J.A., Tomov B.G., Ommen M.L., Øygard S.H., Schou M., Sams T., Stuart M.B., Beers C., Thomsen E.V., Larsen N.B. Three-Dimensional Super-Resolution Imaging Using a Row-Column Array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020;67:538–546. doi: 10.1109/TUFFC.2019.2948563.
    1. Heiles B., Correia M., Hingot V., Pernot M., Provost J., Tanter M., Couture O. Ultrafast 3D Ultrasound Localization Microscopy Using a 32 × 32 Matrix Array. IEEE Trans. Med. Imaging. 2019;38:2005–2015. doi: 10.1109/TMI.2018.2890358.
    1. Harput S., Tortoli P., Eckersley R.J., Dunsby C., Tang M.X., Christensen-Jeffries K., Ramalli A., Brown J., Zhu J., Zhang G., et al. 3-D Super-Resolution Ultrasound Imaging with a 2-D Sparse Array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020;67:269–277. doi: 10.1109/TUFFC.2019.2943646.

Source: PubMed

3
Suscribir