Association between mineral and bone disorder in patients with acute kidney injury following cardiac surgery and adverse outcomes

Tianye Yang, Wenji Wang, Xiao Tang, Peng Shi, Lulu Zhang, Wenyan Yu, Yingxin Xie, Daqiao Guo, Feng Ding, Tianye Yang, Wenji Wang, Xiao Tang, Peng Shi, Lulu Zhang, Wenyan Yu, Yingxin Xie, Daqiao Guo, Feng Ding

Abstract

Background: Numerous studies have evaluated the prevalence and importance of mineral and bone disorders among patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). However, little is known about dysregulated mineral and bone metabolism in acute kidney injury (AKI).

Methods: We evaluated the association between mineral and bone metabolites and clinical outcomes in 158 patients who underwent cardiac surgery and developed AKI between June 2014 and January 2016. The baseline characteristics of the patients were recorded, and the levels of mineral and bone metabolites, including calcium, phosphate, intact parathyroid hormone (iPTH), 25-hydroxyvitamin D (25D), bone-specific alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRACP-5b) and C-terminal fibroblast growth factor 23 (cFGF23) were measured within 12 h after establishing the clinical diagnosis.

Results: The serum phosphate, iPTH and cFGF23 levels were significantly associated with the 28-day mortality (phosphate: Hazard Ratio [HR] =2.620, 95% CI: 1.083 to 6.338, p = 0.035; iPTH: HR = 1.044, 95% CI: 1.001 to 1.090, p = 0.046; cFGF23: HR = 1.367, 95% CI: 1.168 to 1.599, p < 0.001). Moreover, higher serum cFGF23 and BAP levels were independently associated with an increased risk of adverse outcomes. Additionally, we found that the serum cFGF23 levels rose most significantly and were associated with the severity of AKI (P < 0.001).

Conclusions: Mineral and bone metabolites are dysregulated and are associated with adverse clinical outcomes among patients with AKI.

Trial registration: www.clinicaltrials.gov NCT00953992. Registered 6 August 2009.

Keywords: Acute kidney injury; Adverse outcomes; Cardiac surgery; Mineral and bone disorder.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Mineral and bone metabolite levels in a subgroup of 71 patients with different stages of AKI. The (a) Scr levels, (b) calcium levels, (c) phosphate levels, (d) iPTH levels, (e) 25D levels, (f) BAP levels, (g) TRACP-5b levels, and (h) cFGF23 levels. --●-- (dot): AKI stage 1 (n = 23); −-▇--(square): AKI stage 2 (n = 24); ▲ (triangle): AKI stage 3 (n = 24). P values are from repeated-measures linear mixed models comparing the 3 groups. *P < 0.05, **P < 0.01, and ***P < 0.001; a comparison of the biomarker levels cross AKI categories at individual time points. The data are shown as the median (interquartile range). Scr: serum creatinine; iPTH: intact parathyroid hormone; 25D: 25-hydroxyvitamin D; BAP: bone-specific alkaline phosphatase; TRACP-5b: tartrate-resistant acid phosphatase 5b; cFGF23: C-terminal fibroblast growth factor 23

References

    1. Schrier RW, Wang W, Poole B, Mitra A. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest. 2004;114:5–14. doi: 10.1172/JCI200422353.
    1. Loef BG, Epema AH, Smilde TD, Henning RH, Ebels T, Navis G, Stegeman CA. Immediate postoperative renal function deterioration in cardiac surgical patients predicts in-hospital mortality and long-term survival. J Am Soc Nephrol. 2005;16:195–200. doi: 10.1681/ASN.2003100875.
    1. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16:3365–3370. doi: 10.1681/ASN.2004090740.
    1. Yang L, Xing G, Wang L, Wu Y, Li S, Xu G, He Q, Chen J, Chen M, Liu X, Zhu Z, Yang L, Lian X, Ding F, Li Y, Wang H, Wang J, Wang R, Mei C, Xu J, Li R, Cao J, Zhang L, Wang Y, Xu J, Bao B, Liu B, Chen H, Li S, Zha Y, Luo Q, Chen D, Shen Y, Liao Y, Zhang Z, Wang X, Zhang K, Liu L, Mao P, Guo C, Li J, Wang Z, Bai S, Shi S, Wang Y, Wang J, Liu Z, Wang F, Huang D, Wang S, Ge S, Shen Q, Zhang P, Wu L, Pan M, Zou X, Zhu P, Zhao J, Zhou M, Yang L, Hu W, Wang J, Liu B, Zhang T, Han J, Wen T, Zhao M, Wang H, Consortiums IAbC Acute kidney injury in china: A cross-sectional survey. Lancet. 2015;386:1465–1471. doi: 10.1016/S0140-6736(15)00344-X.
    1. Druml W, Lenz K, Laggner AN. Our paper 20 years later: from acute renal failure to acute kidney injury--the metamorphosis of a syndrome. Intens Care Med. 2015;41:1941–1949. doi: 10.1007/s00134-015-3989-5.
    1. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C. Beginning, ending supportive therapy for the kidney I: acute renal failure in critically ill patients: a multinational, multicenter study. Jama. 2005;294:813–818. doi: 10.1001/jama.294.7.813.
    1. Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, Sherrard DJ, Andress DL. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol. 2005;16:520–528. doi: 10.1681/ASN.2004070602.
    1. Kidney Disease: Improving Global Outcomes CKD-MBD Work Group: Kdigo clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (ckd-mbd). Kidney Int Suppl. 2009:S1-130.
    1. Palmer SC, Hayen A, Macaskill P, Pellegrini F, Craig JC, Elder GJ, Strippoli GF. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. Jama. 2011;305:1119–1127. doi: 10.1001/jama.2011.308.
    1. Llach F, Felsenfeld AJ, Haussler MR. The pathophysiology of altered calcium metabolism in rhabdomyolysis-induced acute renal failure. Interactions of parathyroid hormone, 25-hydroxycholecalciferol, and 1,25-dihydroxycholecalciferol. New Engl J Med. 1981;305:117–123. doi: 10.1056/NEJM198107163050301.
    1. Leaf DE, Waikar SS, Wolf M, Cremers S, Bhan I, Stern L. Dysregulated mineral metabolism in patients with acute kidney injury and risk of adverse outcomes. Clin Endocrinol. 2013;79:491–498. doi: 10.1111/cen.12172.
    1. Leaf DE, Jacob KA, Srivastava A, Chen ME, Christov M, Juppner H, Sabbisetti VS, Martin A, Wolf M, Waikar SS: Fibroblast growth factor 23 levels associate with aki and death in critical illness. J Am Soc Nephrol. 2017;28(6):1877-85.
    1. Leaf DE, Christov M, Juppner H, Siew E, Ikizler TA, Bian A, Chen G, Sabbisetti VS, Bonventre JV, Cai X, Wolf M, Waikar SS. Fibroblast growth factor 23 levels are elevated and associated with severe acute kidney injury and death following cardiac surgery. Kidney Int. 2016;89:939–948. doi: 10.1016/j.kint.2015.12.035.
    1. Lai L, Qian J, Yang Y, Xie Q, You H, Zhou Y, Ma S, Hao C, Gu Y, Ding F. Is the serum vitamin d level at the time of hospital-acquired acute kidney injury diagnosis associated with prognosis? PLoS One. 2013;8:e64964. doi: 10.1371/journal.pone.0064964.
    1. van Husen M, Fischer AK, Lehnhardt A, Klaassen I, Moller K, Muller-Wiefel DE, Kemper MJ. Fibroblast growth factor 23 and bone metabolism in children with chronic kidney disease. Kidney Int. 2010;78:200–206. doi: 10.1038/ki.2010.107.
    1. Fahrleitner-Pammer A, Herberth J, Browning SR, Obermayer-Pietsch B, Wirnsberger G, Holzer H, Dobnig H, Malluche HH. Bone markers predict cardiovascular events in chronic kidney disease. J Bone Miner Res. 2008;23:1850–1858. doi: 10.1359/jbmr.080610.
    1. Khwaja A. Kdigo clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c179–c184.
    1. Waikar SS, Bonventre JV. Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol. 2009;20:672–679. doi: 10.1681/ASN.2008070669.
    1. Yamada S, Inaba M, Kurajoh M, Shidara K, Imanishi Y, Ishimura E, Nishizawa Y. Utility of serum tartrate-resistant acid phosphatase (tracp5b) as a bone resorption marker in patients with chronic kidney disease: Independence from renal dysfunction. Clin Endocrinol. 2008;69:189–196. doi: 10.1111/j.1365-2265.2008.03187.x.
    1. Halleen JM, Tiitinen SL, Ylipahkala H, Fagerlund KM, Vaananen HK. Tartrate-resistant acid phosphatase 5b (tracp 5b) as a marker of bone resorption. Clin Lab. 2006;52:499–509.
    1. Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, Li J, Shehadeh LA, Hare JM, David V, Martin A, Fornoni A, Di Marco GS, Kentrup D, Reuter S, Mayer AB, Pavenstadt H, Stypmann J, Kuhn C, Hille S, Frey N, Leifheit-Nestler M, Richter B, Haffner D, Abraham R, Bange J, Sperl B, Ullrich A, Brand M, Wolf M, Faul C. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 2015;22:1020–1032. doi: 10.1016/j.cmet.2015.09.002.
    1. Mathew JS, Sachs MC, Katz R, Patton KK, Heckbert SR, Hoofnagle AN, Alonso A, Chonchol M, Deo R, Ix JH, Siscovick DS, Kestenbaum B, de Boer IH. Fibroblast growth factor-23 and incident atrial fibrillation: the multi-ethnic study of atherosclerosis (mesa) and the cardiovascular health study (chs) Circulation. 2014;130:298–307. doi: 10.1161/CIRCULATIONAHA.113.005499.
    1. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro OM, Kusek JW, Keane MG, Wolf M. Fgf23 induces left ventricular hypertrophy. J Clin Invest. 2011;121:4393–4408. doi: 10.1172/JCI46122.
    1. Munoz Mendoza J, Isakova T, Cai X, Bayes LY, Faul C, Scialla JJ, Lash JP, Chen J, He J, Navaneethan S, Negrea L, Rosas SE, Kretzler M, Nessel L, Xie D, Anderson AH, Raj DS, Wolf M, Investigators CS. Inflammation and elevated levels of fibroblast growth factor 23 are independent risk factors for death in chronic kidney disease. Kidney Int. 2017;91:711–719. doi: 10.1016/j.kint.2016.10.021.
    1. Hanudel M, Juppner H, Salusky IB. Fibroblast growth factor 23: fueling the fire. Kidney Int. 2016;90:928–930. doi: 10.1016/j.kint.2016.08.013.
    1. Chonchol M, Greene T, Zhang Y, Hoofnagle AN, Cheung AK. Low vitamin d and high fibroblast growth factor 23 serum levels associate with infectious and cardiac deaths in the hemo study. J Am Soc Nephrol. 2016;27:227–237. doi: 10.1681/ASN.2014101009.
    1. Annweiler C, Pochic S, Fantino B, Legrand E, Bataille R, Montero-Odasso M, Beauchet O. Serum vitamin d concentration and short-term mortality among geriatric inpatients in acute care settings. Adv Ther. 2010;27:245–249. doi: 10.1007/s12325-010-0025-6.
    1. Saha H, Mustonen J, Pietila K, Pasternack A. Metabolism of calcium and vitamin d3 in patients with acute tubulointerstitial nephritis: a study of 41 patients with nephropathia epidemica. Nephron. 1993;63:159–163. doi: 10.1159/000187175.

Source: PubMed

3
Suscribir