RhoA/rho-kinase, nitric oxide and inflammatory response in LIMA during OPCABG with isoflurane preconditioning

Liang Zhang, Cheng-Bin Wang, Bo Li, Duo-Mao Lin, Jun Ma, Liang Zhang, Cheng-Bin Wang, Bo Li, Duo-Mao Lin, Jun Ma

Abstract

Background: Grafting vessel with LIMA to the left anterior descending coronary artery plays a most important role in the long-term prognosis of OPCABG surgery. The aim of this study was to compare the effects of isoflurane preconditioning on miRs and mRNAs levels in the left internal mammary arterie (LIMA) graft with propofol in patients undergoing off-pump coronary artery bypass surgery (OPCABG).

Methods: Patients were randomly assigned to receive either propofol (n = 15), or interrupted isoflurane (n = 15). In group P, propofol administration was continued at 3-5 mg/kg/h intravenous injection for the duration of surgery. Five minutes prior to incision, patients of the isoflurane group (group Iso) received 2 cycles of 1 MAC isoflurane.

Results: miR-221 were significantly lower in group Iso (P < 0 .05). E-selectin mRNA, RhoA mRNA and ROK mRNA were significantly lower at specimens of LIMA in group Iso compared with those in group P patients (P < 0 .05). The expression of NOS3 mRNA was significantly higher in group Iso patients (P < 0 .05).

Conclusion: Our findings provide some insight that prior interrupted isoflurane administration could regulate miR-221, and downstream effectors (mRNAs) and resulted in actual attenuation of inflammation and spasm of LIMA in patients undergoing OPCABG surgery.

Trial registration: NCT No. ( ClinicalTrials.gov ): NCT02678650; Registration date: January 23, 2016.

Keywords: Isoflurane; Left internal mammary artery; OPCABG.

Conflict of interest statement

Ethics approval and consent to participate

As described in the Methods section, the study was approved by Beijing Anzhen Hospital, Capital Medical University. All participants received detailed information about the study and provided written informed consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Postoperative release of serum cTnI and CK-MB. (a) Serum cTnI levels at different time points. (b) Serum CK-MB levels at different time points. * P < 0.05, ** P < 0.01, compare with T0; + P < 0.05, ++ P < 0.01, between the groups. T0, 5 min prior to incision; T1, 4 h after surgery; T2, 12 h after surgery; T3, 24 h after surgery; T4, 48 h after surgery
Fig. 2
Fig. 2
Expression change of microRNAs (miRs) in LIMA during OPCABG. Expression change of miR-221 in both groups
Fig. 3
Fig. 3
Expression of NO-associated genes. (a) Expression change of NOS3 mRNA. (b) Expression change of eNOS protein
Fig. 4
Fig. 4
Expression of inflammatory-associated genes. (a, b) Expression change of E-selectin and VCAM-1 mRNA. (c) Expression change of IκB-a mRNA
Fig. 5
Fig. 5
Expression of spasm-associated genes. (a, b) Expression change of RhoA and ROK mRNA. (c) Expression change of RhoA protein

References

    1. Yi G, Shine B, Rehman SM, Altman DG, Taggart DP. Effect of bilateral internal mammary artery on long-term survival: a meta-analysis approach. Circulation. 2014;130:539–545. doi: 10.1161/CIRCULATIONAHA.113.004255.
    1. Zhang M, Guddeti RR, Matsuzawa Y, Sara JD, Kwon TG, Liu Z, Sun T, Lee SJ, Lennon RJ, Bell MR, Schaff HV, Daly RC, Lerman LO, Lerman A, Locker C. Left internal mammary artery versus coronary stents: impact on DownstreamCoronary Stenoses and conduit patency. J Am Heart Assoc. 2016;24:e003568.
    1. Carneiro Neto JD, Lima Neto JA, Simões RM, Stolf NA. Coronary- artery spasm after coronary artery bypass graft surgery without extracorporeal circulation: diagnostic and management. Rev Bras Cir Cardiovasc. 2010;25:410–414. doi: 10.1590/S0102-76382010000300020.
    1. He GW, Taggart DP. Spasm in arterial grafts in coronary artery bypass grafting surgery. Ann Thorac Surg. 2016;101:1222–1229. doi: 10.1016/j.athoracsur.2015.09.071.
    1. Qin B, Yang H, Xiao B. Role of microRNAs in endothelial inflammation and senescence. Mol Biol Rep. 2012;39:4509–4518. doi: 10.1007/s11033-011-1241-0.
    1. Ishikawa M, Tanaka S, Arai M, Genda Y, Sakamoto A. Differences in microRNA changes of healthy rat liver between sevoflurane and propofol anesthesia. Anesthesiology. 2012;117:1245–1252. doi: 10.1097/ALN.0b013e3182746676.
    1. Qiao S, Olson JM, Paterson M, Yan Y, Zaja I, Liu Y, Riess ML, Kersten JR, Liang M, Warltier DC, Bosnjak ZJ, Ge ZD. MicroRNA-21 mediates isoflurane-induced cardioprotection against ischemia/reperfusion injury via Akt/nitric oxide synthase/mitochondrial permeability transition pore pathway. Anesthesiology. 2015;123:786–98.
    1. Li JT, Wang H, Li W, Wang LF, Hou LC, Mu JL, Liu X, Chen HJ, Xie KL, Li NL, Gao CF. Anesthetic isoflurane posttreatment attenuates experimental lung injury by inhibiting inflammation and apoptosis. Mediat Inflamm. 2013;2013:e108928.
    1. Frässdorf J, Borowski A, Ebel D, Feindt P, Hermes M, Meemann T, Weber R, Müllenheim J, Weber NC, Preckel B, Schlack W. Impact of preconditioning protocol on anesthetic-induced cardioprotection in patients having coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2009;137(6):1436–1442. doi: 10.1016/j.jtcvs.2008.04.034.
    1. Qu K, Wang Z, Lin XL, Zhang K, He XL, Zhang H. MicroRNAs: key regulators of endothelial progenitor cell functions. Clin Chim Acta. 2015;448:65–73. doi: 10.1016/j.cca.2015.06.017.
    1. Pfeifer P, Werner N, Jansen F. Role and function of MicroRNAs in extracellular vesicles in cardiovascular biology. Biomed Res Int. 2015;2015:161393. doi: 10.1155/2015/161393.
    1. Santulli G. MicroRNAs and Endothelial (Dys) Function. J Cell Physiol. 2016;231:1638–1644. doi: 10.1002/jcp.25276.
    1. Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164–1173. doi: 10.1161/01.RES.0000265065.26744.17.
    1. Chen CF, Huang J, Li H, Zhang C, Huang X, Tong G, Xu YZ. MicroRNA-221 regulates endothelial nitric oxide production and inflammatory responseby targeting adiponectin receptor 1. Gene. 2015;565:246–251. doi: 10.1016/j.gene.2015.04.014.
    1. Szasz T, Webb RC. Rho-Mancing to Sensitize Calcium Signaling for Contraction in the Vasculature: Role of Rho Kinase.Adv Pharmacol. 2017;78:303–22.
    1. Kim M, Park SW, Kim M, D Agati VD, Lee HT. Isoflurane activates intestinal sphingosine kinase to protect against renal ischemia-reperfusion-induced liver and intestine injury. Anesthesiology. 2011;114:363–373. doi: 10.1097/ALN.0b013e3182070c3a.
    1. Lee HT, Ota-Setlik A, Fu Y, Nasr SH, Emala CW. Differential protective effects of volatile anesthetics against renal ischemiareperfusion injury in vivo. Anesthesiology. 2004;101:1313–1324. doi: 10.1097/00000542-200412000-00011.
    1. Cao L, Feng C, Li L, Zuo Z. Contribution of microRNA-203 to the isoflurane preconditioning-induced neuroprotection. Brain Res Bull. 2012;88:525–528. doi: 10.1016/j.brainresbull.2012.05.009.
    1. Jia P, Teng J, Zou J, Fang Y, Zhang X, Bosnjak ZJ, Liang M, Ding X. MiR-21 contributes to xenon-conferred amelioration of renal ischemia-reperfusion injury in mice. Anesthesiology. 2013;119:621–630. doi: 10.1097/ALN.0b013e318298e5f1.
    1. Olson JM, Yan Y, Bai X, Ge ZD, Liang M, Kriegel AJ, Twaroski DM, Bosnjak ZJ. Up-regulation of microRNA-21 mediates isoflurane-induced protection of cardiomyocytes. Anesthesiology. 2015;122:795–805. doi: 10.1097/ALN.0000000000000567.
    1. Callis TE, Chen JF, Wang DZ. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 2007;26:219–225. doi: 10.1089/dna.2006.0556.
    1. Minami Y, Satoh M, Maesawa C, Takahashi Y, Tabuchi T, Itoh T, Nakamura M. Effect of atorvastatin on microRNA 221 / 222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. Eur J Clin Investig. 2009;39:359–367. doi: 10.1111/j.1365-2362.2009.02110.x.
    1. Mann DL. MicroRNAs and the failing heart. N Engl J Med. 2007;356:2644–2645. doi: 10.1056/NEJMcibr072068.
    1. Gimbrone MA, Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardeña G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci. 2000;902:230–239. doi: 10.1111/j.1749-6632.2000.tb06318.x.
    1. Lo Faro ML, Fox B, Whatmore JL, Winyard PG, Whiteman M. Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide. 2014;41:38–47. doi: 10.1016/j.niox.2014.05.014.
    1. De Martin R, Hoeth M, Hofer-Warbinek R, Schmid JA. The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol. 2000;20:83–88.
    1. Ge ZD, Pravdic D, Bienengraeber M, Pratt PF, Jr, Auchampach JA, Gross GJ, Kersten JR, Warltier DC. Isoflurane postconditioning protects against reperfusion injury by preventing mitochondrial permeability transition by an endothelial nitric oxide synthase-dependent mechanism. Anesthesiology. 2010;112:73–85. doi: 10.1097/ALN.0b013e3181c4a607.
    1. Smul TM, Lange M, Redel A, Burkhard N, Roewer N, Kehl F. Desflurane-induced preconditioning against myocardial infarction is mediated by nitricoxide. Anesthesiology. 2006;105:719–725. doi: 10.1097/00000542-200610000-00018.
    1. Huang Z, Zhong X, Irwin MG, Ji S, Wong GT, Liu Y, Xia ZY, Finegan BA, Xia Z. Synergy of isoflurane preconditioning and propofol postconditioning reducesmyocardial reperfusion injury in patients. Clin Sci (Lond) 2011;121:57–69. doi: 10.1042/CS20100435.
    1. Durak I, Kavutcu M, Kaçmaz M, Avci A, Horasanli E, Dikmen B, Cimen MY, Oztürk HS. Effects of isoflurane on nitric oxide metabolism and oxidant status of Guinea pig myocardium. Acta Anaesthesiol Scand. 2001;45:119–122. doi: 10.1034/j.1399-6576.2001.450118.x.
    1. Dimopoulos GJ, Semba S, Kitazawa K, Eto M, Kitazawa T. Ca2+ − dependent rapid Ca2+ sensitization of contraction in arterial smooth muscle. Circ Res. 2007;100:121–129. doi: 10.1161/01.RES.0000253902.90489.df.
    1. Yeon DS, Kim JS, Ahn DS, Kwon SC, Kang BS, Morgan KG. Role of protein kinase C- or RhoA-induced Ca2+ sensitization in stretch-induced myogenic tone. Cardiovasc Res. 2002;53:431–438. doi: 10.1016/S0008-6363(01)00496-5.
    1. Yang S, Wu Q, Huang S, Wang Z, Qi F. Sevoflurane and isoflurane inhibit KCl-induced class II phosphoinositide 3-kinase αsubunit mediated vasoconstriction in rat aorta. BMC Anesthesiol. 2016;16:e63. doi: 10.1186/s12871-016-0227-9.

Source: PubMed

3
Suscribir