Circulating CXCR5⁺CD4⁺ T Follicular-Like Helper Cell and Memory B Cell Responses to Human Papillomavirus Vaccines

Ken Matsui, Joseph W Adelsberger, Troy J Kemp, Michael W Baseler, Julie E Ledgerwood, Ligia A Pinto, Ken Matsui, Joseph W Adelsberger, Troy J Kemp, Michael W Baseler, Julie E Ledgerwood, Ligia A Pinto

Abstract

Through the interaction of T follicular helper (Tfh) cells and B cells, efficacious vaccines can generate high-affinity, pathogen-neutralizing antibodies, and memory B cells. Using CXCR5, CXCR3, CCR6, CCR7, PD1, and ICOS as markers, Tfh-like cells can be identified in the circulation and be classified into three functionally distinct subsets that are PD1+ICOS+, PD1+ ICOS-, or PD1-ICOS-. We used these markers to identify different subsets of CXCR5+CD4+ Tfh-like cells in response to highly immunogenic and efficacious vaccines for human papillomaviruses (HPV): Cervarix and Gardasil. In this small study, we used PBMC samples from 11 Gardasil recipients, and 8 Cervarix recipients from the Vaccine Research Center 902 Study to examine the induction of circulating Tfh-like cells and IgD-CD38HiCD27+ memory B cells by flow cytometry. PD1+ICOS+ CXCR3+CCR6-CXCR5+CD4+ (Tfh1-like) cells were induced and peaked on Day (D) 7 post-first vaccination, but not as much on D7 post-third vaccination. We also observed a trend toward increase in PD1+ICOS+ CXCR3-CCR6-CXCR5+CD4+ (Tfh2-like) cells for both vaccines, and PD1+ICOS+ CXCR3-CCR6+CXCR5+CD4+ (Tfh17-like) subset was induced by Cervarix post-first vaccination. There were also minimal changes in the other cellular subsets. In addition, Cervarix recipients had more memory B cells post-first vaccination than did Gardasil recipients at D14 and D30. We found frequencies of memory B cells at D30 correlated with anti-HPV16 and 18 antibody titers from D30, and the induction levels of memory B cells at D30 and PD1+ICOS+Tfh1-like cells at D7 post-first vaccination correlated for Cervarix. Our study showed that induction of circulating CXCR5+CD4+ Tfh-like subsets can be detected following immunization with HPV vaccines, and potentially be useful as a marker of immunogenicity of vaccines. However, further investigations should be extended to different cohorts with larger sample size to better understand the functions of these T cells, as well as their relationship with B cells and antibodies.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Gating strategy to identify CXCR5…
Fig 1. Gating strategy to identify CXCR5+ CM cells.
(A) Gating scheme used to select live CD3+ CD4+ cells. (B) Live CD3+ CD4+ cells were used to identify naive, central memory, and effector memory cells, and CXCR5 expression on these cellular populations was examined.
Fig 2. Longitudinal analysis of circulating Tfh1-,…
Fig 2. Longitudinal analysis of circulating Tfh1-, Tfh2-, Tfh17-like subsets and their PD1 and ICOS expression.
One of the HPV vaccine samples (Gardasil) is shown. The contour plots on the left most column show the expression of CXCR3 and CCR6 on CXCR5+ CM cells in samples collected from the indicated time points that are shown on the right. These two markers were used to identify Tfh1-like (blue), Tfh2-like (red), and Tfh17-like (purple) subsets. The percentages of each of these subsets are shown inside the plots. The second, third, and fourth columns of plots show the expression of PD1 and ICOS in each of the Tfh-like subset. In the upper right quadrants, the percentages of PD1+ ICOS+ Tfh-like cells are shown. The percentages of PD1+ ICOS- and double negative cells are indicated in the lower right and lower left quadrants, respectively.
Fig 3. Frequency distributions of different subsets…
Fig 3. Frequency distributions of different subsets of circulating Tfh-like cells.
(A) Percentages of circulating Tfh1-, Tfh2-, and Tfh17-like subsets from the Gardasil and Cervarix groups are shown. (B) Frequencies of PD1/ICOS double positive cells, (C) frequencies of PD1+ ICOS- cells, and (D) frequencies of double negative cells within each subset were plotted over time. N = 10–11 (pre-vac to D30) and N = 6–8 (M6 to M7) for Gardasil. N = 8 (pre-vac to D30) and N = 5–6 (M6 to M7) for Cervarix. Paired, one-tailed Wilcoxon rank sum analyses were performed between the pre-vac time point and each of the post-vaccination time point for the first vaccination. For the third vaccination (M6 to M7), M6 was used as the baseline for the analyses. Black horizontal bars indicate the medians. For the comparison of the two vaccine groups described in the “HPV vaccines induced circulating PD1+ICOS+ Tfh1-like cells” section, paired, two-tailed Wilcoxon rank sum analyses were performed.
Fig 4. Generation of IgD - CD38…
Fig 4. Generation of IgD-CD38HiCD27+ memory B cells after vaccination.
(A) Gating strategy used to identify IgD-CD38HiCD27+ memory B cells is shown. (B) Percentages of memory B cells in Gardasil or Cervarix immunized recipients were plotted over time. Statistical analyses were performed as described in Fig 3. Black bars indicate the medians. For the comparison of the two vaccine groups described in the “A higher frequency of IgD-CD38HiCD27+ memory B cells was present in Cervarix recipients at D30 post-first vaccination” section, paired, two-tailed Wilcoxon rank sum analyses were performed. N = 10–11 (pre-vac to D30) and N = 6–8 (M6 to M7) for Gardasil. N = 8 (pre-vac to D30) and N = 5–6 (M6 to M7) for Cervarix. (C and D) ELISA were performed to determine the titers of anti-HPV16 (C) and-HPV18 (D) IgG. Geometric mean antibody titers (EU/ mL) ± 95% confidence intervals in log10 scale were plotted as a function of time. The plots on the left show the titers post-first vaccination, and the plots on the right show the titers after the third vaccination. Paired, two-tailed Wilcoxon rank sum analyses were performed. N = 12–15 Gardasil, and N = 8–12 for Cervarix.
Fig 5. Memory B cell frequencies at…
Fig 5. Memory B cell frequencies at D30 correlate with the titers of anti-HPV16 and-HPV18 antibodies.
Spearman rank correlational analyses were performed on the percentages of IgD-CD38HiCD27+ B cells at D30 post-first vaccination with the antibody titers of anti-HPV16 and-HPV18 antibodies from D30. The data were plotted in log10 scale for both axes.

References

    1. Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2012; 30:429–57. 10.1146/annurev-immunol-020711-075032
    1. Amanna IJ, Slifka MK, Crotty S. Immunity and immunological memory following smallpox vaccination. Immunol Rev. 2006; 211:320–37.
    1. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011; 29:621–63. 10.1146/annurev-immunol-031210-101400
    1. King C, Tangye SG, Mackay CR. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol. 2008; 26:741–66. 10.1146/annurev.immunol.26.021607.090344
    1. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014; 41(4):529–42. 10.1016/j.immuni.2014.10.004
    1. Tarlinton D, Good-Jacobson K. Diversity among memory B cells: origin, consequences, and utility. Science. 2013; 341(6151):1205–11. 10.1126/science.1241146
    1. McHeyzer-Williams LJ, McHeyzer-Williams MG. Antigen-specific memory B cell development. Annu Rev Immunol. 2005; 23:487–513.
    1. Kim CH, Rott LS, Clark-Lewis I, Campbell DJ, Wu L, Butcher EC. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J Exp Med. 2001; 193(12):1373–81.
    1. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med. 2000; 192(11):1553–62.
    1. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000; 192(11):1545–52.
    1. Chevalier N, Jarrossay D, Ho E, Avery DT, Ma CS, Yu D, et al. CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses. J Immunol. 2011; 186(10):5556–68. 10.4049/jimmunol.1002828
    1. Tsai LM, Yu D. Follicular helper T-cell memory: establishing new frontiers during antibody response. Immunol Cell Biol. 2014; 92(1):57–63. 10.1038/icb.2013.68
    1. Schmitt N, Ueno H. Blood Tfh cells come with colors. Immunity. 2013; 39(4):629–30. 10.1016/j.immuni.2013.09.011
    1. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011; 34(1):108–21. 10.1016/j.immuni.2010.12.012
    1. Locci M, Havenar-Daughton C, Landais E, Wu J, Kroenke MA, Arlehamn CL, et al. Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity. 2013; 39(4):758–69. 10.1016/j.immuni.2013.08.031
    1. He J, Tsai LM, Leong YA, Hu X, Ma CS, Chevalier N, et al. Circulating precursor CCR7(lo)PD-1(hi) CXCR5(+) CD4(+) T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity. 2013; 39(4):770–81. 10.1016/j.immuni.2013.09.007
    1. Boswell KL, Paris R, Boritz E, Ambrozak D, Yamamoto T, Darko S, et al. Loss of circulating CD4 T cells with B cell helper function during chronic HIV infection. PLoS Pathog. 2014; 10(1):e1003853 10.1371/journal.ppat.1003853
    1. Bentebibel SE, Lopez S, Obermoser G, Schmitt N, Mueller C, Harrod C, et al. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci Transl Med. 2013; 5(176):176ra32 10.1126/scitranslmed.3005191
    1. Schmitt N, Bentebibel SE, Ueno H. Phenotype and functions of memory Tfh cells in human blood. Trends Immunol. 2014; 35(9):436–42. 10.1016/j.it.2014.06.002
    1. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999; 189(1):12–9.
    1. Markowitz LE, Dunne EF, Saraiya M, Chesson HW, Curtis CR, Gee J, et al. Human papillomavirus vaccination: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2014; 63(RR-05):1–30.
    1. Schiller JT, Castellsague X, Garland SM. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine. 2012; 30 Suppl 5:F123–38. 10.1016/j.vaccine.2012.04.108
    1. Lacey CJ, Lowndes CM, Shah KV. Chapter 4: Burden and management of non-cancerous HPV-related conditions: HPV-6/11 disease. Vaccine. 2006; 24 Suppl 3:S3/35–41.
    1. Romanowski B. Long term protection against cervical infection with the human papillomavirus: review of currently available vaccines. Hum Vaccin. 2011; 7(2):161–9.
    1. Stanley M, Pinto LA, Trimble C. Human papillomavirus vaccines—immune responses. Vaccine. 2012; 30 Suppl 5:F83–7. 10.1016/j.vaccine.2012.04.106
    1. Einstein MH, Baron M, Levin MJ, Chatterjee A, Edwards RP, Zepp F, et al. Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum Vaccin. 2009; 5(10):705–19.
    1. Giannini SL, Hanon E, Moris P, Van Mechelen M, Morel S, Dessy F, et al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine. 2006; 24(33–34):5937–49.
    1. Herrin DM, Coates EE, Costner PJ, Kemp TJ, Nason MC, Saharia KK, et al. Comparison of adaptive and innate immune responses induced by licensed vaccines for Human Papillomavirus. Hum Vaccin Immunother. 2014; 10(12):3446–54. 10.4161/hv.34408
    1. Martin JE, Sullivan NJ, Enama ME, Gordon IJ, Roederer M, Koup RA, et al. A DNA vaccine for Ebola virus is safe and immunogenic in a phase I clinical trial. Clin Vaccine Immunol. 2006; 13(11):1267–77.
    1. Pinto LA, Trivett MT, Wallace D, Higgins J, Baseler M, Terabe M, et al. Fixation and cryopreservation of whole blood and isolated mononuclear cells: Influence of different procedures on lymphocyte subset analysis by flow cytometry. Cytometry B Clin Cytom. 2005; 63(1):47–55.
    1. Matsui K, Giri N, Alter BP, Pinto LA. Cytokine production by bone marrow mononuclear cells in inherited bone marrow failure syndromes. Br J Haematol. 2013; 163(1):81–92. 10.1111/bjh.12475
    1. Moon JJ, Chu HH, Hataye J, Pagan AJ, Pepper M, McLachlan JB, et al. Tracking epitope-specific T cells. Nat Protoc. 2009; 4(4):565–81. 10.1038/nprot.2009.9
    1. Buck CB, Thompson CD. Production of papillomavirus-based gene transfer vectors. Curr Protoc Cell Biol. 2007; Chapter 26:Unit 26 1.
    1. Bossaller L, Burger J, Draeger R, Grimbacher B, Knoth R, Plebani A, et al. ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. J Immunol. 2006; 177(7):4927–32.
    1. Cannons JL, Tangye SG, Schwartzberg PL. SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol. 2011; 29:665–705. 10.1146/annurev-immunol-030409-101302
    1. Qi H, Cannons JL, Klauschen F, Schwartzberg PL, Germain RN. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature. 2008; 455(7214):764–9. 10.1038/nature07345
    1. Deenick EK, Chan A, Ma CS, Gatto D, Schwartzberg PL, Brink R, et al. Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. Immunity. 2010; 33(2):241–53. 10.1016/j.immuni.2010.07.015
    1. Rasheed AU, Rahn HP, Sallusto F, Lipp M, Muller G. Follicular B helper T cell activity is confined to CXCR5(hi)ICOS(hi) CD4 T cells and is independent of CD57 expression. Eur J Immunol. 2006; 36(7):1892–903.
    1. Chtanova T, Tangye SG, Newton R, Frank N, Hodge MR, Rolph MS, et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol. 2004; 173(1):68–78.
    1. Haynes NM, Allen CD, Lesley R, Ansel KM, Killeen N, Cyster JG. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J Immunol. 2007; 179(8):5099–108.
    1. Suan D, Nguyen A, Moran I, Bourne K, Hermes JR, Arshi M, et al. T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses. Immunity. 2015; 42(4):704–18. 10.1016/j.immuni.2015.03.002
    1. Khurana S, Verma N, Yewdell JW, Hilbert AK, Castellino F, Lattanzi M, et al. MF59 adjuvant enhances diversity and affinity of antibody-mediated immune response to pandemic influenza vaccines. Sci Transl Med. 2011; 3(85):85ra48 10.1126/scitranslmed.3002336
    1. Koyama S, Aoshi T, Tanimoto T, Kumagai Y, Kobiyama K, Tougan T, et al. Plasmacytoid dendritic cells delineate immunogenicity of influenza vaccine subtypes. Sci Transl Med. 2010; 2(25):25ra4.
    1. Stanley MA, Sudenga SL, Giuliano AR. Alternative dosage schedules with HPV virus-like particle vaccines. Expert Rev Vaccines. 2014; 13(8):1027–38. 10.1586/14760584.2014.935767

Source: PubMed

3
Suscribir