A Walnut-Enriched Diet Reduces Lipids in Healthy Caucasian Subjects, Independent of Recommended Macronutrient Replacement and Time Point of Consumption: a Prospective, Randomized, Controlled Trial

Charlotte Bamberger, Andreas Rossmeier, Katharina Lechner, Liya Wu, Elisa Waldmann, Renée G Stark, Julia Altenhofer, Kerstin Henze, Klaus G Parhofer, Charlotte Bamberger, Andreas Rossmeier, Katharina Lechner, Liya Wu, Elisa Waldmann, Renée G Stark, Julia Altenhofer, Kerstin Henze, Klaus G Parhofer

Abstract

Studies indicate a positive association between walnut intake and improvements in plasma lipids. We evaluated the effect of an isocaloric replacement of macronutrients with walnuts and the time point of consumption on plasma lipids. We included 194 healthy subjects (134 females, age 63 ± 7 years, BMI 25.1 ± 4.0 kg/m²) in a randomized, controlled, prospective, cross-over study. Following a nut-free run-in period, subjects were randomized to two diet phases (8 weeks each). Ninety-six subjects first followed a walnut-enriched diet (43 g walnuts/day) and then switched to a nut-free diet. Ninety-eight subjects followed the diets in reverse order. Subjects were also randomized to either reduce carbohydrates (n = 62), fat (n = 65), or both (n = 67) during the walnut diet, and instructed to consume walnuts either as a meal or as a snack. The walnut diet resulted in a significant reduction in fasting cholesterol (walnut vs.

Control: -8.5 ± 37.2 vs. -1.1 ± 35.4 mg/dL; p = 0.002), non-HDL cholesterol (-10.3 ± 35.5 vs. -1.4 ± 33.1 mg/dL; p ≤ 0.001), LDL-cholesterol (-7.4 ± 32.4 vs. -1.7 ± 29.7 mg/dL; p = 0.029), triglycerides (-5.0 ± 47.5 vs. 3.7 ± 48.5 mg/dL; p = 0.015) and apoB (-6.7 ± 22.4 vs. -0.5 ± 37.7; p ≤ 0.001), while HDL-cholesterol and lipoprotein (a) did not change significantly. Neither macronutrient replacement nor time point of consumption significantly affected the effect of walnuts on lipids. Thus, 43 g walnuts/d improved the lipid profile independent of the recommended macronutrient replacement and the time point of consumption.

Keywords: carbohydrate; cardiovascular disease; cholesterol; fat; lipids; macronutrient replacement; n-3-PUFA; nuts; walnuts.

Conflict of interest statement

C.B., A.R., K.L., L.W., E.W., R.S., J.A. and K.H. declare no conflict of interest. The research was supported by a grant from the California Walnut Commission (Folsom, CA) to K.G.P.. The Walnut Commission had no role in study performance, data analysis and or manuscript writing.

Figures

Figure 1
Figure 1
Flowchart of study subjects. In total, 204 subjects were randomized. Ten subjects dropped out due to disease (n = 2), medication (n = 1), personal reason (n = 5), protocol violation (n = 2). A total of 194 subjects were included in statistical evaluation. CH: carbohydrate restriction, F: fat restriction, Comb: combined carbohydrate and fat restriction.
Figure 2
Figure 2
Flowchart of study procedures.
Figure 3
Figure 3
Changes in fasting plasma lipid levels and apoB concentrations from baseline (mg/dL) during the walnut diet phase and control diet phase. (n = 194) Values are mean ± SEM. p-value refers to differences between walnut phase and control phase; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. TC, total cholesterol; LDL-C, low density lipoprotein-cholesterol; HDL-C, high density lipoprotein-cholesterol; VLDL-C, very low density lipoprotein-cholesterol; TG, triglycerides; Lp (a), lipoprotein (a); apoB, apolipoproteinB.
Figure 4
Figure 4
Changes in fasting plasma lipid levels and apoB concentration from baseline in subgroups (mg/dL). Values are mean ± SEM. CH: carbohydrates reduced in walnut-phase (n = 62); F: Fat reduced in walnut-phase (n = 65); Comb: both fat and carbohydrates reduced in walnut-phase (n = 67). TC, total cholesterol; LDL-C, low density lipoprotein-cholesterol; HDL-C, high density lipoprotein-cholesterol; VLDL-C, very low density lipoprotein-cholesterol; TG, triglycerides; Lp (a), lipoprotein (a); apoB, apolipoproteinB.
Figure 5
Figure 5
Adherence to recommended macronutrient replacement during walnut consumption. Percentage of daily total calories at baseline, as well as the recommended and the actual distribution of calories, were calculated by analyzing dietary reports.

References

    1. Schaefer E.J. Lipoproteins, nutrition, and heart disease. Am. J. Clin. Nutr. 2002;75:191–212.
    1. Taylor F., Huffman M.D., Macedo A.F., Moore T.H., Burke M., Davey Smith G., Ward K., Ebrahim S. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2013:CD004816. doi: 10.1002/14651858.CD004816.pub5.
    1. Mannu G.S., Zaman M.J., Gupta A., Rehman H.U., Myint P.K. Evidence of lifestyle modification in the management of hypercholesterolemia. Curr. Cardiol. Rev. 2013;9:2–14.
    1. Mozaffarian D., Wu J.H. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011;58:2047–2067. doi: 10.1016/j.jacc.2011.06.063.
    1. Becker D.J., Gordon R.Y., Morris P.B., Yorko J., Gordon Y.J., Li M., Iqbal N. Simvastatin vs. therapeutic lifestyle changes and supplements: Randomized primary prevention trial. Mayo Clin. Proc. 2008;83:758–764. doi: 10.4065/83.7.758.
    1. Berryman C.E., Grieger J.A., West S.G., Chen C.Y., Blumberg J.B., Rothblat G.H., Sankaranarayanan S., Kris-Etherton P.M. Acute consumption of walnuts and walnut components differentially affect postprandial lipemia, endothelial function, oxidative stress, and cholesterol efflux in humans with mild hypercholesterolemia. J. Nutr. 2013;143:788–794. doi: 10.3945/jn.112.170993.
    1. Banel D.K., Hu F.B. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: A meta-analysis and systematic review. Am. J. Clin. Nutr. 2009;90:56–63. doi: 10.3945/ajcn.2009.27457.
    1. Kralova Lesna I., Suchanek P., Kovar J., Stavek P., Poledne R. Replacement of dietary saturated fas by pufas in diet and reverse cholesterol transport. J. Lipid Res. 2008;49:2414–2418. doi: 10.1194/jlr.M800271-JLR200.
    1. Tapsell L.C., Gillen L.J., Patch C.S., Batterham M., Owen A., Bare M., Kennedy M. Including walnuts in a low-fat/modified-fat diet improves hdl cholesterol-to-total cholesterol ratios in patients with type 2 diabetes. Diabetes Care. 2004;27:2777–2783. doi: 10.2337/diacare.27.12.2777.
    1. Chisholm A., Mann J., Skeaff M., Frampton C., Sutherland W., Duncan A., Tiszavari S. A diet rich in walnuts favourably influences plasma fatty acid profile in moderately hyperlipidaemic subjects. Eur. J. Clin. Nutr. 1998;52:12–16. doi: 10.1038/sj.ejcn.1600507.
    1. Spiller G.A., Jenkins D.J., Cragen L.N., Gates J.E., Bosello O., Berra K., Rudd C., Stevenson M., Superko R. Effect of a diet high in monounsaturated fat from almonds on plasma cholesterol and lipoproteins. J. Am. Coll. Nutr. 1992;11:126–130.
    1. Cortes B., Nunez I., Cofan M., Gilabert R., Perez-Heras A., Casals E., Deulofeu R., Ros E. Acute effects of high-fat meals enriched with walnuts or olive oil on postprandial endothelial function. J. Am. Coll. Cardiol. 2006;48:1666–1671. doi: 10.1016/j.jacc.2006.06.057.
    1. Salas-Salvado J., Fernandez-Ballart J., Ros E., Martinez-Gonzalez M.A., Fito M., Estruch R., Corella D., Fiol M., Gomez-Gracia E., Aros F., et al. Effect of a mediterranean diet supplemented with nuts on metabolic syndrome status: One-year results of the predimed randomized trial. Arch. Intern. Med. 2008;168:2449–2458. doi: 10.1001/archinte.168.22.2449.
    1. Ros E., Nunez I., Perez-Heras A., Serra M., Gilabert R., Casals E., Deulofeu R. A walnut diet improves endothelial function in hypercholesterolemic subjects: A randomized crossover trial. Circulation. 2004;109:1609–1614. doi: 10.1161/01.CIR.0000124477.91474.FF.
    1. Estruch R., Ros E., Salas-Salvado J., Covas M.I., Corella D., Aros F., Gomez-Gracia E., Ruiz-Gutierrez V., Fiol M., Lapetra J., et al. Primary prevention of cardiovascular disease with a mediterranean diet. N. Engl. J. Med. 2013;368:1279–1290. doi: 10.1056/NEJMoa1200303.
    1. Almario R.U., Vonghavaravat V., Wong R., Kasim-Karakas S.E. Effects of walnut consumption on plasma fatty acids and lipoproteins in combined hyperlipidemia. Am. J. Clin. Nutr. 2001;74:72–79.
    1. Griel A.E., Kris-Etherton P.M. Tree nuts and the lipid profile: A review of clinical studies. Br. J. Nutr. 2006;96(Suppl. 2):S68–S78. doi: 10.1017/BJN20061866.
    1. Wu L., Piotrowski K., Rau T., Waldmann E., Broedl U.C., Demmelmair H., Koletzko B., Stark R.G., Nagel J.M., Mantzoros C.S., et al. Walnut-enriched diet reduces fasting non-hdl-cholesterol and apolipoprotein b in healthy caucasian subjects: A randomized controlled cross-over clinical trial. Metabolism. 2014;63:382–391. doi: 10.1016/j.metabol.2013.11.005.
    1. Tan S.Y., Mattes R.D. Appetitive, dietary and health effects of almonds consumed with meals or as snacks: A randomized, controlled trial. Eur. J. Clin. Nutr. 2013;67:1205–1214. doi: 10.1038/ejcn.2013.184.
    1. Sabate J., Fraser G.E., Burke K., Knutsen S.F., Bennett H., Lindsted K.D. Effects of walnuts on serum lipid levels and blood pressure in normal men. N. Engl. J. Med. 1993;328:603–607. doi: 10.1056/NEJM199303043280902.
    1. Ander B.P., Dupasquier C.M., Prociuk M.A., Pierce G.N. Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp. Clin. Cardiol. 2003;8:164–172.
    1. Grundy S.M. Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol. N. Engl. J. Med. 1986;314:745–748. doi: 10.1056/NEJM198603203141204.
    1. Mensink R.P., Katan M.B. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler. Thromb. 1992;12:911–919. doi: 10.1161/01.ATV.12.8.911.
    1. Siri-Tarino P.W., Sun Q., Hu F.B., Krauss R.M. Saturated fatty acids and risk of coronary heart disease: Modulation by replacement nutrients. Curr. Atheroscler. Rep. 2010;12:384–390. doi: 10.1007/s11883-010-0131-6.
    1. Siri-Tarino P.W., Sun Q., Hu F.B., Krauss R.M. Saturated fat, carbohydrate, and cardiovascular disease. Am. J. Clin. Nutr. 2010;91:502–509. doi: 10.3945/ajcn.2008.26285.
    1. Berglund L., Lefevre M., Ginsberg H.N., Kris-Etherton P.M., Elmer P.J., Stewart P.W., Ershow A., Pearson T.A., Dennis B.H., Roheim P.S., et al. Comparison of monounsaturated fat with carbohydrates as a replacement for saturated fat in subjects with a high metabolic risk profile: Studies in the fasting and postprandial states. Am. J. Clin. Nutr. 2007;86:1611–1620.
    1. Hodson L., Skeaff C.M., Chisholm W.A. The effect of replacing dietary saturated fat with polyunsaturated or monounsaturated fat on plasma lipids in free-living young adults. Eur. J. Clin. Nutr. 2001;55:908–915. doi: 10.1038/sj.ejcn.1601234.
    1. Njike V.Y., Ayettey R., Petraro P., Treu J.A., Katz D.L. Walnut ingestion in adults at risk for diabetes: Effects on body composition, diet quality, and cardiac risk measures. BMJ Open Diabetes Res. Care. 2015;3:e000115. doi: 10.1136/bmjdrc-2015-000115.
    1. Hull S., Re R., Chambers L., Echaniz A., Wickham M.S. A mid-morning snack of almonds generates satiety and appropriate adjustment of subsequent food intake in healthy women. Eur. J. Nutr. 2015;54:803–810. doi: 10.1007/s00394-014-0759-z.
    1. Josse A.R., Kendall C.W., Augustin L.S., Ellis P.R., Jenkins D.J. Almonds and postprandial glycemia—A dose-response study. Metabolism. 2007;56:400–404. doi: 10.1016/j.metabol.2006.10.024.
    1. Pan A., Sun Q., Manson J.E., Willett W.C., Hu F.B. Walnut consumption is associated with lower risk of type 2 diabetes in women. J. Nutr. 2013;143:512–518. doi: 10.3945/jn.112.172171.
    1. Ma Y., Njike V.Y., Millet J., Dutta S., Doughty K., Treu J.A., Katz D.L. Effects of walnut consumption on endothelial function in type 2 diabetic subjects: A randomized controlled crossover trial. Diabetes Care. 2010;33:227–232. doi: 10.2337/dc09-1156.
    1. Tapsell L.C., Batterham M.J., Teuss G., Tan S.Y., Dalton S., Quick C.J., Gillen L.J., Charlton K.E. Long-term effects of increased dietary polyunsaturated fat from walnuts on metabolic parameters in type II diabetes. Eur. J. Clin. Nutr. 2009;63:1008–1015. doi: 10.1038/ejcn.2009.19.
    1. Moloney F., Toomey S., Noone E., Nugent A., Allan B., Loscher C.E., Roche H.M. Antidiabetic effects of cis-9, trans-11-conjugated linoleic acid may be mediated via anti-inflammatory effects in white adipose tissue. Diabetes. 2007;56:574–582. doi: 10.2337/db06-0384.
    1. Lotta L.A., Sharp S.J., Burgess S., Perry J.R., Stewart I.D., Willems S.M., Luan J., Ardanaz E., Arriola L., Balkau B., et al. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: A meta-analysis. JAMA. 2016;316:1383–1391. doi: 10.1001/jama.2016.14568.
    1. Koh K.K., Quon M.J., Han S.H., Lee Y., Kim S.J., Shin E.K. Atorvastatin causes insulin resistance and increases ambient glycemia in hypercholesterolemic patients. J. Am. Coll. Cardiol. 2010;55:1209–1216. doi: 10.1016/j.jacc.2009.10.053.
    1. Baer D.J., Gebauer S.K., Novotny J.A. Measured energy value of pistachios in the human diet. Br. J. Nutr. 2012;107:120–125. doi: 10.1017/S0007114511002649.
    1. Mattes R.D., Dreher M.L. Nuts and healthy body weight maintenance mechanisms. Asia Pac. J. Clin. Nutr. 2010;19:137–141.
    1. Baer D.J., Gebauer S.K., Novotny J.A. Walnuts consumed by healthy adults provide less available energy than predicted by the atwater factors. J. Nutr. 2016;146:9–13. doi: 10.3945/jn.115.217372.

Source: PubMed

3
Suscribir