Repeated Transcranial Magnetic Stimulation for Improving Cognition in Patients With Alzheimer Disease: Protocol for a Randomized, Double-Blind, Placebo-Controlled Trial

Zahra Moussavi, Grant Rutherford, Brian Lithgow, Colleen Millikin, Mandana Modirrousta, Behzad Mansouri, Xikui Wang, Craig Omelan, Lesley Fellows, Paul Fitzgerald, Lisa Koski, Zahra Moussavi, Grant Rutherford, Brian Lithgow, Colleen Millikin, Mandana Modirrousta, Behzad Mansouri, Xikui Wang, Craig Omelan, Lesley Fellows, Paul Fitzgerald, Lisa Koski

Abstract

Background: Alzheimer disease has no known cure. As existing pharmacologic interventions only modestly slow cognitive decline, there is a need for new treatments. Recent trials of repetitive transcranial magnetic stimulation (rTMS) have reported encouraging results for improving or stabilizing cognition in patients diagnosed with Alzheimer dementia. However, owing to small samples and lack of a well-controlled double-blind design, the results to date are inconclusive. This paper presents the protocol for a large placebo-controlled double-blind study designed with sufficient statistical rigor to measure the efficacy of rTMS treatment in patients with Alzheimer dementia.

Objective: The objectives are to (1) recruit and enroll up to 200 eligible participants, (2) estimate the difference in treatment effects between active treatment and sham treatment, (3) estimate the difference in treatment effects between two doses of rTMS applications, (4) estimate the duration of treatment effects among responders to active rTMS treatment, and (5) estimate the effect of dementia severity on treatment outcomes among patients receiving active rTMS treatment.

Methods: We have designed our study to be a double-blind, randomized, placebo-controlled clinical trial investigating the short- and long-term (up to 6 months) benefits of active rTMS treatment at two doses (10 sessions over 2 weeks and 20 sessions over 4 weeks) compared with sham rTMS treatment. The study will include patients aged ≥55 years who are diagnosed with Alzheimer disease at an early to moderate stage and have no history of seizures and no major depression. The primary outcome measure is the change in the Alzheimer Disease Assessment Scale-Cognitive Subscale score from pretreatment to posttreatment. Secondary outcomes are changes in performance on tests of frontal lobe functioning (Stroop test and verbal fluency), changes in neuropsychiatric symptoms (Neuropsychiatric Inventory Questionnaire), and changes in activities of daily living (Alzheimer Disease Co-operative Study-Activities of Daily Living Inventory). Tolerability of the intervention will be assessed using a modification of the Treatment Satisfaction Questionnaire for Medication. We assess participants at baseline and 3, 5, 8, 16, and 24 weeks after the intervention.

Results: As of November 1, 2020, we have screened 523 individuals, out of which 133 were eligible and have been enrolled. Out of the 133 individuals, 104 have completed the study. Moreover, as of November 1, 2020, there has been no serious adverse event. We anticipate that rTMS will considerably improve cognitive function, with effects lasting up to 3 months. Moreover, we expect rTMS to be a well-tolerated treatment with no serious side effect.

Conclusions: This protocol design will allow to address both the rTMS active treatment dose and its short- and long-term effects compared with sham treatment in large samples.

Trial registration: ClinicalTrials.gov NCT02908815; https://ichgcp.net/clinical-trials-registry/NCT02908815.

International registered report identifier (irrid): DERR1-10.2196/25144.

Keywords: Alzheimer disease; double blind; placebo controlled; randomized; repetitive transcranial magnetic stimulation; treatment.

Conflict of interest statement

Conflicts of Interest: None declared.

©Zahra Moussavi, Grant Rutherford, Brian Lithgow, Colleen Millikin, Mandana Modirrousta, Behzad Mansouri, Xikui Wang, Craig Omelan, Lesley Fellows, Paul Fitzgerald, Lisa Koski. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 08.01.2021.

References

    1. Ahmed MA, Darwish ES, Khedr EM, El Serogy YM, Ali AM. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer's dementia. J Neurol. 2012 Jan;259(1):83–92. doi: 10.1007/s00415-011-6128-4.
    1. Bentwich J, Dobronevsky E, Aichenbaum S, Shorer R, Peretz R, Khaigrekht M, Marton RG, Rabey JM. Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer's disease: a proof of concept study. J Neural Transm (Vienna) 2011 Mar;118(3):463–71. doi: 10.1007/s00702-010-0578-1.
    1. Cotelli M, Manenti R, Cappa SF, Geroldi C, Zanetti O, Rossini PM, Miniussi C. Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch Neurol. 2006 Nov;63(11):1602–4. doi: 10.1001/archneur.63.11.1602.
    1. Cotelli M, Manenti R, Cappa SF, Zanetti O, Miniussi C. Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur J Neurol. 2008 Dec;15(12):1286–92. doi: 10.1111/j.1468-1331.2008.02202.x.
    1. Cotelli M, Calabria M, Manenti R, Rosini S, Zanetti O, Cappa SF, Miniussi C. Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry. 2011 Jul;82(7):794–7. doi: 10.1136/jnnp.2009.197848.
    1. Devi G, Voss HU, Levine D, Abrassart D, Heier L, Halper J, Martin L, Lowe S. Open-label, short-term, repetitive transcranial magnetic stimulation in patients with Alzheimer's disease with functional imaging correlates and literature review. Am J Alzheimers Dis Other Demen. 2014 May;29(3):248–55. doi: 10.1177/1533317513517047.
    1. Rabey JM, Dobronevsky E, Aichenbaum S, Gonen O, Marton RG, Khaigrekht M. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer's disease: a randomized, double-blind study. J Neural Transm (Vienna) 2013 May;120(5):813–9. doi: 10.1007/s00702-012-0902-z.
    1. Rutherford G, Lithgow B, Moussavi Z. Short and Long-term Effects of rTMS Treatment on Alzheimer's Disease at Different Stages: A Pilot Study. J Exp Neurosci. 2015;9:43–51. doi: 10.4137/JEN.S24004.
    1. Eliasova I, Anderkova L, Marecek R, Rektorova I. Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer's disease: a pilot study. J Neurol Sci. 2014 Nov 15;346(1-2):318–22. doi: 10.1016/j.jns.2014.08.036.
    1. Koch G, Bonnì S, Pellicciari MC, Casula EP, Mancini M, Esposito R, Ponzo V, Picazio S, Di Lorenzo F, Serra L, Motta C, Maiella M, Marra C, Cercignani M, Martorana A, Caltagirone C, Bozzali M. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease. Neuroimage. 2018 Apr 01;169:302–311. doi: 10.1016/j.neuroimage.2017.12.048.
    1. Lee J, Choi BH, Oh E, Sohn EH, Lee AY. Treatment of Alzheimer's Disease with Repetitive Transcranial Magnetic Stimulation Combined with Cognitive Training: A Prospective, Randomized, Double-Blind, Placebo-Controlled Study. J Clin Neurol. 2016 Jan;12(1):57–64. doi: 10.3988/jcn.2016.12.1.57.
    1. Nguyen J, Suarez A, Kemoun G, Meignier M, Le Saout E, Damier P, Nizard J, Lefaucheur J. Repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer's disease. Neurophysiol Clin. 2017 Feb;47(1):47–53. doi: 10.1016/j.neucli.2017.01.001.
    1. Rabey JM, Dobronevsky E. Repetitive transcranial magnetic stimulation (rTMS) combined with cognitive training is a safe and effective modality for the treatment of Alzheimer's disease: clinical experience. J Neural Transm (Vienna) 2016 Dec;123(12):1449–1455. doi: 10.1007/s00702-016-1606-6.
    1. Sabbagh M, Sadowsky C, Tousi B, Agronin ME, Alva G, Armon C, Bernick C, Keegan AP, Karantzoulis S, Baror E, Ploznik M, Pascual-Leone A. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer's disease. Alzheimers Dement. 2020 Apr;16(4):641–650. doi: 10.1016/j.jalz.2019.08.197.
    1. Zhao J, Li Z, Cong Y, Zhang J, Tan M, Zhang H, Geng N, Li M, Yu W, Shan P. Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer's disease patients. Oncotarget. 2017 May 16;8(20):33864–33871. doi: 10.18632/oncotarget.13060.
    1. Burns A, Yeates A, Akintade L, Del Valle M, Zhang RY, Schwam EM, Perdomo CA. Defining treatment response to donepezil in Alzheimer's disease: responder analysis of patient-level data from randomized, placebo-controlled studies. Drugs Aging. 2008;25(8):707–14. doi: 10.2165/00002512-200825080-00007.
    1. Lanctôt KL, Herrmann N, Yau KK, Khan LR, Liu BA, LouLou MM, Einarson TR. Efficacy and safety of cholinesterase inhibitors in Alzheimer's disease: a meta-analysis. CMAJ. 2003 Sep 16;169(6):557–64.
    1. Courtney C, Farrell D, Gray R, Hills R, Lynch L, Sellwood E, Edwards S, Hardyman W, Raftery J, Crome P, Lendon C, Shaw H, Bentham P, AD2000 Collaborative Group Long-term donepezil treatment in 565 patients with Alzheimer's disease (AD2000): randomised double-blind trial. Lancet. 2004 Jun 26;363(9427):2105–15. doi: 10.1016/S0140-6736(04)16499-4.
    1. Barker AT. An introduction to the basic principles of magnetic nerve stimulation. J Clin Neurophysiol. 1991 Jan;8(1):26–37. doi: 10.1097/00004691-199101000-00005.
    1. Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000 Jul 13;406(6792):147–50. doi: 10.1038/35018000.
    1. Hoogendam JM, Ramakers GM, Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 2010 Apr;3(2):95–118. doi: 10.1016/j.brs.2009.10.005.
    1. Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res. 2000 Aug 4;133(4):425–30. doi: 10.1007/s002210000432.
    1. Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993 Jan 07;361(6407):31–9. doi: 10.1038/361031a0.
    1. Goldberg E. The Executive Brain: Frontal Lobes and the Civilized Mind. Oxford, United Kingdom: Oxford University Press; 2002.
    1. Weiler M, Stieger KC, Long JM, Rapp PR. Transcranial Magnetic Stimulation in Alzheimer's Disease: Are We Ready? eNeuro. 2020;7(1) doi: 10.1523/ENEURO.0235-19.2019.
    1. Robinson SR. Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochemistry International. 2000 Apr;36(4-5):471–482. doi: 10.1016/s0197-0186(99)00150-3.
    1. Michael N, Gösling M, Reutemann M, Kersting A, Heindel W, Arolt V, Pfleiderer B. Metabolic changes after repetitive transcranial magnetic stimulation (rTMS) of the left prefrontal cortex: a sham-controlled proton magnetic resonance spectroscopy (1H MRS) study of healthy brain. Eur J Neurosci. 2003 Jun 02;17(11):2462–8. doi: 10.1046/j.1460-9568.2003.02683.x.
    1. Kimbrell TA, Dunn RT, George MS, Danielson AL, Willis MW, Repella JD, Benson BE, Herscovitch P, Post RM, Wassermann EM. Left prefrontal-repetitive transcranial magnetic stimulation (rTMS) and regional cerebral glucose metabolism in normal volunteers. Psychiatry Research: Neuroimaging. 2002 Oct 01;115(3):101–113. doi: 10.1016/s0925-4927(02)00041-0.
    1. Brighina F, Palermo A, Daniele O, Aloisio A, Fierro B. High-frequency transcranial magnetic stimulation on motor cortex of patients affected by migraine with aura: a way to restore normal cortical excitability? Cephalalgia. 2010 Jan 01;30(1):46–52. doi: 10.1111/j.1468-2982.2009.01870.x.
    1. Cohen H, Kaplan Z, Kotler M, Kouperman I, Moisa R, Grisaru N. Repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in posttraumatic stress disorder: a double-blind, placebo-controlled study. Am J Psychiatry. 2004 Mar;161(3):515–24. doi: 10.1176/appi.ajp.161.3.515.
    1. Bidzan M, Bidzan L. [Neurobehavioral manifestation in early period of Alzheimer disease and vascular dementia] Psychiatr Pol. 2014;48(2):319–30.
    1. Wergeland JN, Selbæk Geir, Høgset Lisbeth D, Söderhamn Ulrika, Kirkevold Ø. Dementia, neuropsychiatric symptoms, and the use of psychotropic drugs among older people who receive domiciliary care: a cross-sectional study. Int Psychogeriatr. 2014 Mar;26(3):383–91. doi: 10.1017/S1041610213002032.
    1. Huang Y, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005 Jan 20;45(2):201–6. doi: 10.1016/j.neuron.2004.12.033.
    1. Pötter-Nerger M, Fischer S, Mastroeni C, Groppa S, Deuschl G, Volkmann J, Quartarone A, Münchau A, Siebner HR. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs. J Neurophysiol. 2009 Dec;102(6):3180–90. doi: 10.1152/jn.91046.2008.
    1. Tokay T, Holl N, Kirschstein T, Zschorlich V, Köhling R. High-frequency magnetic stimulation induces long-term potentiation in rat hippocampal slices. Neurosci Lett. 2009 Sep 18;461(2):150–4. doi: 10.1016/j.neulet.2009.06.032.
    1. Vlachos A, Muller-Dahlhaus F, Rosskopp J, Lenz M, Ziemann U, Deller T. Repetitive Magnetic Stimulation Induces Functional and Structural Plasticity of Excitatory Postsynapses in Mouse Organotypic Hippocampal Slice Cultures. Journal of Neuroscience. 2012 Nov 28;32(48):17514–17523. doi: 10.1523/jneurosci.0409-12.2012.
    1. Banerjee J, Sorrell ME, Celnik PA, Pelled G. Immediate Effects of Repetitive Magnetic Stimulation on Single Cortical Pyramidal Neurons. PLoS One. 2017 Jan 23;12(1):e0170528. doi: 10.1371/journal.pone.0170528.
    1. Makowiecki K, Harvey AR, Sherrard RM, Rodger J. Low-Intensity Repetitive Transcranial Magnetic Stimulation Improves Abnormal Visual Cortical Circuit Topography and Upregulates BDNF in Mice. Journal of Neuroscience. 2014 Aug 06;34(32):10780–10792. doi: 10.1523/jneurosci.0723-14.2014.
    1. Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW. BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer's disease. Neuron. 1991 Nov;7(5):695–702. doi: 10.1016/0896-6273(91)90273-3.
    1. Lenz M, Galanis C, Müller-Dahlhaus F, Opitz A, Wierenga CJ, Szabó G, Ziemann U, Deller T, Funke K, Vlachos A. Repetitive magnetic stimulation induces plasticity of inhibitory synapses. Nat Commun. 2016 Jan 08;7(1):10020. doi: 10.1038/ncomms10020. doi: 10.1038/ncomms10020.
    1. Ma K, McLaurin J. Melanocyte Stimulating Hormone Prevents GABAergic Neuronal Loss and Improves Cognitive Function in Alzheimer's Disease. Journal of Neuroscience. 2014 May 14;34(20):6736–6745. doi: 10.1523/jneurosci.5075-13.2014.
    1. Rubio SE, Vega-Flores G, Martínez A, Bosch C, Pérez-Mediavilla A, del Río J, Gruart A, Delgado-García JM, Soriano E, Pascual M. Accelerated aging of the GABAergic septohippocampal pathway and decreased hippocampal rhythms in a mouse model of Alzheimer's disease. FASEB J. 2012 Nov 26;26(11):4458–67. doi: 10.1096/fj.12-208413.
    1. Schwab C, Yu S, Wong W, McGeer EG, McGeer PL. GAD65, GAD67, and GABAT Immunostaining in Human Brain and Apparent GAD65 Loss in Alzheimer's Disease. JAD. 2013 Jan 21;33(4):1073–1088. doi: 10.3233/jad-2012-121330.
    1. Guerra A, López-Alonso V, Cheeran B, Suppa A. Solutions for managing variability in non-invasive brain stimulation studies. Neurosci Lett. 2020 Feb 06;719:133332. doi: 10.1016/j.neulet.2017.12.060.
    1. Espiritu DAV, Rashid H, Mast BT, Fitzgerald J, Steinberg J, Lichtenberg PA. Depression, cognitive impairment and function in Alzheimer's disease. Int J Geriatr Psychiatry. 2001 Nov;16(11):1098–103. doi: 10.1002/gps.476.
    1. Lefaucheur J, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen J, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018) Clin Neurophysiol. 2020 Feb;131(2):474–528. doi: 10.1016/j.clinph.2019.11.002.
    1. Lefaucheur J, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schönfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) Clin Neurophysiol. 2014 Nov;125(11):2150–2206. doi: 10.1016/j.clinph.2014.05.021.
    1. Rutherford G, Gole R, Moussavi Z. rTMS as a Treatment of Alzheimer's Disease with and without Comorbidity of Depression: A Review. Neurosci J. 2013 Feb 07;2013:679389–5. doi: 10.1155/2013/679389. doi: 10.1155/2013/679389.
    1. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993 Nov 01;43(11):2412–4. doi: 10.1212/wnl.43.11.2412-a.
    1. Nasreddine ZP, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005 Apr;53(4):695–9. doi: 10.1111/j.1532-5415.2005.53221.x.
    1. Alexopoulos GS, Abrams RC, Young RC, Shamoian CA. Cornell scale for depression in dementia. Biological Psychiatry. 1988 Feb;23(3):271–284. doi: 10.1016/0006-3223(88)90038-8.
    1. Brainsight Navigation. Rogue Research. [2020-12-19].
    1. Stroop JR. Studies of interference in serial verbal reactions. Journal of Experimental Psychology. 1935;18(6):643–662. doi: 10.1037/h0054651.
    1. Atkinson MJ, Sinha A, Hass SL, Colman SS, Kumar RN, Brod M, Rowland CR. Validation of a general measure of treatment satisfaction, the Treatment Satisfaction Questionnaire for Medication (TSQM), using a national panel study of chronic disease. Health Qual Life Outcomes. 2004 Feb 26;2:12. doi: 10.1186/1477-7525-2-12.
    1. Guo Yi, Logan Henrietta L, Glueck Deborah H, Muller Keith E. Selecting a sample size for studies with repeated measures. BMC Med Res Methodol. 2013 Jul 31;13(100) doi: 10.1186/1471-2288-13-100.
    1. Downton F. Contributions to Probability and Statistics. In: Olkin I, Ghurye SG, Hoeffing W, Madow WG, Mann HB, editors. The Mathematical Gazette. Palo Alto, California: Stanford University Press; 1963. pp. 169–170.
    1. Brown M, Forsythe Ab. Robust Tests for the Equality of Variances. Journal of the American Statistical Association. 1974 Jun;69(346):364–367. doi: 10.1080/01621459.1974.10482955.
    1. Hochberg Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika. 1988;75(4):800–802. doi: 10.1093/biomet/75.4.800.
    1. Dunnett CW. A Multiple Comparison Procedure for Comparing Several Treatments with a Control. Journal of the American Statistical Association. 1955 Dec;50(272):1096–1121. doi: 10.1080/01621459.1955.10501294.
    1. Tukey JW. The Future of Data Analysis. Ann. Math. Statist. 1962 Mar;33(1):1–67. doi: 10.1214/aoms/1177704711.

Source: PubMed

3
Suscribir