Early Onset Colorectal Cancer: An Emerging Cancer Risk in Patients with Diamond Blackfan Anemia

Jeffrey M Lipton, Christine L S Molmenti, Pooja Desai, Alexander Lipton, Steven R Ellis, Adrianna Vlachos, Jeffrey M Lipton, Christine L S Molmenti, Pooja Desai, Alexander Lipton, Steven R Ellis, Adrianna Vlachos

Abstract

Diamond Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome, the founding member of a class of disorders known as ribosomopathies. Most cases result from loss of function mutations or deletions in 1 of 23 genes encoding either a small or large subunit-associated ribosomal protein (RP), resulting in RP haploinsufficiency. DBA is characterized by red cell hypoplasia or aplasia, poor linear growth and congenital anomalies. Small case series and case reports demonstrate DBA to be a cancer predisposition syndrome. Recent analyses from the Diamond Blackfan Anemia Registry of North America (DBAR) have quantified the cancer risk in DBA. These studies reveal the most prevalent solid tumor, presenting in young adults and in children and adolescents, to be colorectal cancer (CRC) and osteogenic sarcoma, respectively. Of concern is that these cancers are typically detected at an advanced stage in patients who, because of their constitutional bone marrow failure, may not tolerate full-dose chemotherapy. Thus, the inability to provide optimal therapy contributes to poor outcomes. CRC screening in individuals over the age of 50 years, and now 45 years, has led to early detection and significant improvements in outcomes for non-DBA patients with CRC. These screening and surveillance strategies have been adapted to detect familial early onset CRC. With the recognition of DBA as a moderately penetrant cancer risk syndrome a rational screening and surveillance strategy will be implemented. The downstream molecular events, resulting from RP haploinsufficiency and leading to cancer, are the subject of significant scientific inquiry.

Keywords: Diamond Blackfan Anemia; cancer predisposition; cancer screening and surveillance; colorectal cancer.

Conflict of interest statement

The authors declare no competing interests, financial or otherwise.

Figures

Figure 1
Figure 1
(A). Bone marrow aspirate demonstrating red cell aplasia, characterized by a selective absence of red cell precursors, in patients with DBA. (B) Typical radial ray anomalies: triphalangeal thumb and congenital absence of a thumb in a single patient. Image is post-pollicization surgery to construct thumb from the index digit. (C) Increased hazard rate for solid tumors beginning at age 20 years and increasing to 2% per year at age 45 years and continually increasing thereafter (purple). The hazard rate for acute myeloid leukemia (AML) starts to increase at age 45 years (green). The rate of deaths from other causes increased to over 1.5% per year at age 30 years (black) and the rate of hematopoietic stem cell transplant (HSCT) is highest under age 10 years with more patients undergoing transplantation at younger ages (red) [13].

References

    1. Ulirsch J.C., Verboon J.M., Kazerounian S., Guo M.H., Yuan D., Ludwig L.S., Handsaker R.E., Abdulhay N.J., Fiorini C., Genovese G., et al. The Genetic Landscape of Diamond-Blackfan Anemia. Am. J. Hum. Genet. 2019;104:356. doi: 10.1016/j.ajhg.2018.12.011.
    1. Vlachos A., Ball S., Dahl N., Alter B.P., Sheth S., Ramenghi U., Meerpohl J., Karlsson S., Liu J., LeBlanc T., et al. Diagnosing and Treating Diamond Blackfan Anemia: Results of an International Clinical Consensus Conference. Br. J. Haematol. 2008;142:859–876. doi: 10.1111/j.1365-2141.2008.07269.x.
    1. Alter B.P., Giri N., Savage S.A., Rosenberg P.S. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica. 2018;103:30–39. doi: 10.3324/haematol.2017.178111.
    1. Pospisilova D.C.J., Belickova M., Horvathova M., Volejnikova J. Malignancies and MDS in Patients with Diamond-Blackfan Anemia (DBA) from the Czech National DBA Registry. Blood. 2019;134:5017. doi: 10.1182/blood-2019-126187.
    1. Simkins A., Bannon S.A., Khoury J.D., Kanagal-Shamanna R., Foglesong J.S., Alvarado Y., Borthakur G., DiNardo C.D. Diamond-Blackfan Anemia Predisposing to Myelodysplastic Syndrome in Early Adulthood. JCO Precis. Oncol. 2017;1:1–5. doi: 10.1200/PO.17.00112.
    1. Aquino V.M., Buchanan G.R. Osteogenic sarcoma in a child with transfusion-dependent Diamond-Blackfan anemia. J. Pediatr. Hematol. Oncol. 1996;18:230–232. doi: 10.1097/00043426-199605000-00030.
    1. Lipton J.M., Federman N., Khabbaze Y., Schwartz C.L., Hilliard L.M., Clark J.I., Vlachos A. Osteogenic sarcoma associated with Diamond-Blackfan anemia: A report from the Diamond-Blackfan Anemia Registry. J. Pediatr. Hematol. Oncol. 2001;23:39–44. doi: 10.1097/00043426-200101000-00009.
    1. Muir C., Dodds A., Samaras K. Mid-life extra-haematopoetic manifestations of Diamond-Blackfan anaemia. Endocrinol. Diabetes Metab. Case Rep. 2017;2017:16-0141. doi: 10.1530/EDM-16-0141.
    1. Matsuda I., Tsuchida Y.-A., Toyoshima F., Tozawa K., Ikehara H., Ohda Y., Hori K., Ohtsuka Y., Watari J., Miwa H., et al. Occurrence of colon tumors in a 16-year-old Japanese boy after hematopoietic stem cell transplantation for Diamond Blackfan anemia at age of 4: A case report. Int. J. Clin. Exp. Pathol. 2015;8:5938–5943.
    1. Kimura K., Shimazu K., Toki T., Misawa M., Fukuda K., Yoshida T., Taguchi D., Fukuda S., Iijima K., Takahashi N., et al. Outcome of colorectal cancer in Diamond-Blackfan syndrome with a ribosomal protein S19 mutation. Clin. J. Gastroenterol. 2020;13:1173–1177. doi: 10.1007/s12328-020-01176-7.
    1. Janov A.J., Leong T., Nathan D.G., Guinan E.C. Diamond-Blackfan anemia. Natural history and sequelae of treatment. Medicine. 1996;75:77–78. doi: 10.1097/00005792-199603000-00004.
    1. Vlachos A., Rosenberg P.S., Atsidaftos E., Alter B.P., Lipton J.M. Incidence of neoplasia in Diamond Blackfan anemia: A report from the Diamond Blackfan Anemia Registry. Blood. 2012;119:3815–3819. doi: 10.1182/blood-2011-08-375972.
    1. Vlachos A., Rosenberg P., Atsidaftos E., Kang J., Onel K., Sharaf R.N., Alter B.P., Lipton J.M. Increased risk of colon cancer and osteogenic sarcoma in Diamond-Blackfan anemia. Blood. 2018;132:2205–2208. doi: 10.1182/blood-2018-05-848937.
    1. Ellis S.R. Nucleolar stress in Diamond Blackfan anemia pathophysiology. Biochim. Biophys. Acta. 2014;1842:765–768. doi: 10.1016/j.bbadis.2013.12.013.
    1. Singh S.A., Goldberg T.A., Henson A.L., Husain-Krautter S., Nihrane A., Blanc L., Ellis S.R., Lipton J.M., Liu J.M. p53-Independent cell cycle and erythroid differentiation defects in murine embryonic stem cells haploinsufficient for Diamond Blackfan anemia-proteins: RPS19 versus RPL5. PLoS ONE. 2014;9:e89098. doi: 10.1371/journal.pone.0089098.
    1. Vlachos A., Blanc L., Lipton J.M. Diamond Blackfan anemia: A model for the translational approach to understanding human disease. Expert Rev. Hematol. 2014;7:359–372. doi: 10.1586/17474086.2014.897923.
    1. Danilova N., Sakamoto K.M., Lin S. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood. 2008;112:5228–5237. doi: 10.1182/blood-2008-01-132290.
    1. Payne E.M., Virgilio M., Narla A., Sun H., Levine M., Paw B., Berliner N., Look A.T., Ebert B.L., Khanna-Gupta A. L-Leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway. Blood. 2012;120:2214–2224. doi: 10.1182/blood-2011-10-382986.
    1. Yang Z., Keel S.B., Shimamura A., Liu L., Gerds A.T., Li H.Y., Wood B.L., Scott B.L., Abkowitz J.L. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome. Sci. Transl. Med. 2016;8:338ra367. doi: 10.1126/scitranslmed.aaf3006.
    1. Ludwig L.S., Gazda H.T., Eng J.C., Eichhorn S.W., Thiru P., Ghazvinian R., George T., Gotlib J.R., Beggs A.H., Sieff C.A., et al. Altered translation of GATA1 in Diamond-Blackfan anemia. Nat. Med. 2014;20:748–753. doi: 10.1038/nm.3557.
    1. Horos R., Ijspeert H., Pospisilova D., Sendtner R., Andrieu-Soler C., Taskesen E., Nieradka A., Cmejla R., Sendtner M., Touw I.P., et al. Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood. 2012;119:262–272. doi: 10.1182/blood-2011-06-358200.
    1. Tiu G.C., Kerr C.H., Forester C.M., Krishnarao P.S., Rosenblatt H.D., Raj N., Lantz T.C., Zhulyn O., Bowen M.E., Shokat L., et al. A p53-dependent translational program directs tissue-selective phenotypes in a model of ribosomopathies. Dev. Cell. 2021;56:2089–2102.e11. doi: 10.1016/j.devcel.2021.06.013.
    1. Kampen K.R., Sulima S.O., Vereecke S., De Keersmaecker K. Hallmarks of ribosomopathies. Nucleic Acids Res. 2020;48:1013–1028. doi: 10.1093/nar/gkz637.
    1. Sulima S.O., Kampen K.R., De Keersmaecker K. Cancer Biogenesis in Ribosomopathies. Cells. 2019;8:229. doi: 10.3390/cells8030229.
    1. Sulima S.O., Kampen K.R., Vereecke S., Pepe D., Fancello L., Verbeeck J., Dinman J.D., De Keersmaecker K. Ribosomal Lesions Promote Oncogenic Mutagenesis. Cancer Res. 2019;79:320–327. doi: 10.1158/0008-5472.CAN-18-1987.
    1. Baker N.E., Kale A. Mutations in ribosomal proteins: Apoptosis, cell competition, and cancer. Mol. Cell Oncol. 2016;3:e1029065. doi: 10.1080/23723556.2015.1029065.
    1. Amadou A., Achatz M.I.W., Hainaut P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: Temporal phases of Li-Fraumeni syndrome. Curr. Opin. Oncol. 2018;30:23–29. doi: 10.1097/CCO.0000000000000423.
    1. Malkin D., Nichols K.E., Schiffman J.D., Plon S.E., Brodeur G.M. The Future of Surveillance in the Context of Cancer Predisposition: Through the Murky Looking Glass. Clin. Cancer Res. 2017;23:e133–e137. doi: 10.1158/1078-0432.CCR-17-2026.
    1. Li F.P., Fraumeni J.F.J. Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann. Intern. Med. 1969;71:747–752. doi: 10.7326/0003-4819-71-4-747.
    1. Malkin D., Li F.P., Strong L.C., Fraumeni J.F., Nelson C.E., Kim D.H., Kassel J., Gryka M.A., Bischoff F.Z., Tainsky M.A., et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–1238. doi: 10.1126/science.1978757.
    1. Lipton J.M., Molmenti C.L., Hussain M., Desai P., Florento M., Atsidaftos E., Vlachos A. Colorectal cancer screening and surveillance strategy for patients with Diamond Blackfan anemia: Preliminary recommendations from the Diamond Blackfan Anemia Registry. Pediatr. Blood Cancer. 2021;68:e28984. doi: 10.1002/pbc.28984.
    1. Ajore R., Raiser D., McConkey M., Jöud M., Boidol B., Mar B., Saksena G., Weinstock D.M., Armstrong S., Ellis S.R., et al. Deletion of ribosomal protein genes is a common vulnerability in human cancer, especially in concert with TP53 mutations. EMBO Mol. Med. 2017;9:498–507. doi: 10.15252/emmm.201606660.
    1. Farrar J.E., Vlachos A., Atsidaftos E., Carlson-Donohoe H., Markello T.C., Arceci R.J., Ellis S.R., Lipton J.M., Bodine D.M. Ribosomal protein gene deletions in Diamond-Blackfan anemia. Blood. 2011;118:6943–6951. doi: 10.1182/blood-2011-08-375170.
    1. Plassart L.S.R., Montellese C., Rinaldi D., Larburu N., Pichereaux C., Froment C., Lebaron S., O’Donohue M.-F., Kutay U., Marcoux J., et al. The final step of 40S ribosomal subunit maturation is controlled by a dual key lock. Elife. 2021;10:e61254. doi: 10.7554/eLife.61254.
    1. Ferretti M.B., Ghalei H., Ward E.A., Potts E.L., Karbstein K. Rps26 directs mRNA-specific translation by recognition of Kozak sequence elements. Nat. Struct. Mol. Biol. 2017;24:700–707. doi: 10.1038/nsmb.3442.
    1. Akimoto N., Ugai T., Zhong R., Hamada T., Fujiyoshi K., Giannakis M., Wu K., Cao Y., Ng K., Ogino S. Rising incidence of early-onset colorectal cancer—A call to action. Nat. Rev. Clin. Oncol. 2021;18:230–243. doi: 10.1038/s41571-020-00445-1.
    1. Siegel R.L., Fedewa S.A., Anderson W.F., Miller K.D., Ma J., Rosenberg P., Jemal A. Colorectal Cancer Incidence Patterns in the United States, 1974–2013. J. Natl. Cancer Inst. 2017;109:djw322. doi: 10.1093/jnci/djw322.
    1. Silla I.O., Rueda D., Rodriguez Y., Garcia J.L., de la Cruz Vigo F., Perea J. Early-onset colorectal cancer: A separate subset of colorectal cancer. World J. Gastroenterol. 2014;20:17288–17296. doi: 10.3748/wjg.v20.i46.17288.
    1. Jasperson K.W., Tuohy T.M., Neklason D.W., Burt R.W. Hereditary and familial colon cancer. Gastroenterology. 2010;138:2044–2058. doi: 10.1053/j.gastro.2010.01.054.
    1. Bulow S. Familial adenomatous polyposis. Ann. Med. 1989;21:299–307. doi: 10.3109/07853898909149211.
    1. Boland C.R., Lynch H.T. The history of Lynch syndrome. Fam. Cancer. 2013;12:145–157. doi: 10.1007/s10689-013-9637-8.
    1. Valle L., Vilar E., Tavtigian S.V., Stoffel E.M. Genetic predisposition to colorectal cancer: Syndromes, genes, classification of genetic variants and implications for precision medicine. J. Pathol. 2019;247:574–588. doi: 10.1002/path.5229.
    1. Kessel R., Vlachos A., Lipton J.M. Ribosomopathy association with colorectal cancer. Gastroenterology. 2015;148:258. doi: 10.1053/j.gastro.2014.08.046.
    1. Nieminen T.T., O’Donohue M.-F., Wu Y., Lohi H., Scherer S., Paterson A.D., Ellonen P., Abdel-Rahman W.M., Valo S., Mecklin J.-P., et al. Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency. Gastroenterology. 2014;147:595–598.e5. doi: 10.1053/j.gastro.2014.06.009.
    1. Collaborative R., Zaborowski A.M., Abdile A., Adamina M., Aigner F., d’Allens L., Allmer C., Álvarez A., Anula R., Andric M., et al. Characteristics of Early-Onset vs Late-Onset Colorectal Cancer: A Review. JAMA Surg. 2021;156:865–874. doi: 10.1001/jamasurg.2021.2380.
    1. Tichelli A., Beohou E., Labopin M., Socié G., Rovó A., Badoglio M., Van Biezen A., Bader P., Duarte R.F., Basak G., et al. Evaluation of Second Solid Cancers After Hematopoietic Stem Cell Transplantation in European Patients. JAMA Oncol. 2019;5:229–235. doi: 10.1001/jamaoncol.2018.4934.
    1. Zauber A.G., Winawer S.J., O’Brien M.J., Lansdorp-Vogelaar I., van Ballegooijen M., Hankey B.F., Shi W., Bond J.H., Schapiro M., Panish J.F., et al. Colonoscopic Polypectomy and Long-Term Prevention of Colorectal-Cancer Deaths. N. Engl. J. Med. 2012;366:687–696. doi: 10.1056/NEJMoa1100370.
    1. Syngal S., E Brand R., Church J.M., Giardiello F.M., Hampel H.L., Burt R.W. ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. Am. J. Gastroenterol. 2015;110:223–262. doi: 10.1038/ajg.2014.435.
    1. MacFarland S.P., Zelley K., Long J.M., McKenna D., Mamula P., Domchek S.M., Nathanson K.L., Brodeur G.M., Rustgi A.K., Katona B.W., et al. Earlier Colorectal Cancer Screening May Be Necessary In Patients With Li-Fraumeni Syndrome. Gastroenterology. 2019;156:273–274. doi: 10.1053/j.gastro.2018.09.036.
    1. Gupta S., Lieberman D., Anderson J.C., Burke C.A., Dominitz J., Kaltenbach T., Robertson D.J., Shaukat A., Syngal S., Rex D.K. Recommendations for Follow-Up After Colonoscopy and Polypectomy: A Consensus Update by the US Multi-Society Task Force on Colorectal Cancer. Am. J. Gastroenterol. 2020;115:415–434. doi: 10.14309/ajg.0000000000000544.
    1. National Comprehensive Cancer Network (NCCN) NCCN Clinical Practice Guidelines in Oncology. National Comprehensive Cancer Network (NCCN); Plymouth Meeting, PA, USA: 2020. Colorectal Cancer Screening.
    1. Kahi C.J., Boland C.R., Dominitz J.A., Giardiello F.M., Johnson D.A., Kaltenbach T., Lieberman D., Levin T.R., Robertson D.J., Rex D.K. Colonoscopy Surveillance After Colorectal Cancer Resection: Recommendations of the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2016;150:758–768.e11. doi: 10.1053/j.gastro.2016.01.001.
    1. Niv Y., Moeslein G., Vasen H.F., Karner-Hanusch J., Lubinsky J., Gasche C., The MesaCAPP Research Group Quality of colonoscopy in Lynch syndrome. Endosc. Int. Open. 2014;2:E252–E255. doi: 10.1055/s-0034-1377920.
    1. Monahan K.J., Bradshaw N., Dolwani S., Desouza B., Dunlop M.J., East J.E., Ilyas M., Kaur A., Lalloo F., Latchford A., et al. Guidelines for the management of hereditary colorectal cancer from the British Society of Gastroenterology (BSG)/Association of Coloproctology of Great Britain and Ireland (ACPGBI)/United Kingdom Cancer Genetics Group (UKCGG) Gut. 2020;69:411–444. doi: 10.1136/gutjnl-2019-319915.
    1. Diamond L.K., Blackfan K.D. Hypoplastic anemia. Am. J. Dis. Child. 1938;56:464–467.
    1. Diamond L.K., Wang W.C., Alter B.P. Congenital hypoplastic anemia. Adv. Pediatr. 1976;22:349–378.

Source: PubMed

3
Suscribir