Short daily versus conventional hemodialysis for hypertensive patients: a randomized cross-over study

Deborah L Zimmerman, Marcel Ruzicka, Paul Hebert, Dean Fergusson, Rhian M Touyz, Kevin D Burns, Deborah L Zimmerman, Marcel Ruzicka, Paul Hebert, Dean Fergusson, Rhian M Touyz, Kevin D Burns

Abstract

Background: Treatment of end stage renal disease patients with short daily hemodialysis has been associated with an improvement in blood pressure. It is unclear from these studies if anti-hypertensive management had been optimized prior to starting short daily hemodialysis. Also, the potential mechanism(s) of blood pressure improvement remain to be fully elucidated.

Study design, setting and participants: We undertook a randomized cross-over trial in adult hypertensive patients with ESRD treated with conventional hemodialysis to determine: 1) if short-daily hemodialysis is associated with a reduction in systolic blood pressure after a 3-month blood pressure optimization period and; 2) the potential mechanism(s) of blood pressure reduction. Blood pressure was measured using Canadian Hypertension Education Program guidelines. Extracellular fluid volume (ECFV) was assessed with bioimpedance. Serum catecholamines were used to assess the sympathetic nervous system. Interleukin-6 (IL-6) and thiobarbituric acid reactive substances (T-BARS) were used as markers of inflammation and oxidative stress respectively.

Results: After a 3-month run-in phase in which systolic blood pressure improved, there was no significant difference in pre-dialysis systolic pressure between short-daily and conventional hemodialysis (p = 0.39). However, similar blood pressures were achieved on fewer anti-hypertensive medications with short daily hemodialysis compared to conventional hemodialysis (p = 0.01). Short daily hemodialysis, compared to conventional hemodialysis, was not associated with a difference in dry weight or ECFV (p = 0.77). Sympathetic nervous system activity as assessed by plasma epinephrine (p = 1.0) and norepinephrine (p = 0.52) was also not different. Markers of inflammation (p = 0.42) and oxidative stress (p = 0.83) were also similar between the two treatment arms.

Conclusions: Patients treated with short daily, compared to conventional hemodialysis, have similar blood pressure control on fewer anti-hypertensive medications. The mechanism(s) by which short daily hemodialysis allows for decreased anti-hypertensive medication use remains unclear but effects on sodium balance and changes in peripheral vascular resistance require further study.

Trial registration: ClinicalTrials.gov NCT00759967.

Conflict of interest statement

Competing Interests: The authors have declared no competing interests exist.

Figures

Figure 1. Protocolized Blood Pressure Management Algorithm.
Figure 1. Protocolized Blood Pressure Management Algorithm.
Figure 2. Flow Diagram.
Figure 2. Flow Diagram.
Figure 3. Trial Flow.
Figure 3. Trial Flow.
Figure 4. Graph of Period Effects.
Figure 4. Graph of Period Effects.

References

    1. Laupacis A, Keown P, Pus N, Drueger H, Ferguson B, et al. (1996) A study of the quality of life and const-utility of renal transplant. Kidney Int 50 (1) 235–42.
    1. Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC, et al. (1995) The prognositc importance of left ventricular geometry in uremic cardiomyopathy. J Am Soc Nephrol 5 (12) 2024–31.
    1. Agarwal R, Nissenson AR, Batlle D, Coyne DW, Trout JR, et al. (2003) Prevalence, treatment, and control of hypertension in chronic hemodialysis patients in the United States. Am J Med 115: 291–297.
    1. Horl MP, Horl WH (2002) Hemodialsis-associated hypertension: pathophysiology and therapy. Am J Kidney Dis 39 (2) 227–244.
    1. Montezano AC, Touyez RM (2011) Molecular mechanisms of hypertension: reactive oxygen species and antioxidants: a basic science update for the clinician. Can J Cardiol 28: 288–295.
    1. Zilch O, Vos PF, Oey PL, Cramer MJM, Ligtenberg G, et al. (2007) Sympathetic hyperactivity in haemodialysis patients is reduced by short daily haemodialysis. J Hypertension 25: 1285–1289.
    1. Fagugli RM, Reboldi G, Quintaliani G, Pasini P, Ciao G, et al. (2001) Short daily hemodialysis: blood pressure control and left ventricular mass reduction in hypertensive hemodialysis patients. Am J Kidney Dis 38 (2) 371–376.
    1. FHN Trial Group (2010) In-center hemodialysis six times per week versus three times per week. N Engl J Med 363 (24) 2287–2300.
    1. Nesrallah G, Suri R, Moist L, Kortas C, Lindsay RM (2003) Volume control and blood pressure management in patients undergoing quotidian hemodialysis. Am J Kidney Dis 42 (1) S13–17.
    1. Chan CT, Floras JS, Miller JA, Richardson MA, Pierratos A (2002) Regression of left ventricular hypertrophy after conversion to nocturnal hemodialysis. Kidney Int 61: 2235–2239.
    1. Chan CT, Harvey PJ, Picton P, Pierratos A, Miller JA, et al. (2003) Short-term blood pressure, noradrenergic, and vascular effects of nocturnal home hemodialysis. Hypertension 42: 925–31.
    1. Rocco MV, Lockridge RS Jr, Beck GJ, Eggers PW, Gassman JJ, et al. (2011) The effects of frequent nocturnal home hemodialysis: the Frequent Hemodialysis Network Nocturnal Trial. Kidney Int 80 (10) 1080–1091.
    1. Katzarski KS, Charra B, Luik AJ, Nisell J, Divino Filho JC, et al. (1999) Fluid state and blood pressure control in patients treated with long and short haemodialysis. Nephrol Dial Transplant 14 (2) 369–75.
    1. Luik AJ, v d Sande FM, Weideman P, Cheriex E, Kooman JP, et al. (2001) The influence of increasing dialysis treatment and reducing dry weight on blood pressure control in hemodialysis patients: a prospective study. Am J Nephrol 21 (6) 471–478.
    1. Ponnuchamy B, Khalil RA (2009) Cell mediators in renal vascular dysfunction in hypertension. Am J Physiol Regul Integr Comp Physiol 296: R1001–R1018.
    1. Yuen D, Richardson RMA, Chan CT (2005) Improvements in phosphate control with short daily in-center hemodialysis. Clin Nephrol 64: 364–370.
    1. Cox-Reijven PL, Looman JP, Soeters PB, van der Sande FM, Leunissen KM (2001) Role of bioimpedance spectroscopy in assessment of body water compartments in hemodialysis patients. Am J Kidney Dis 38: 832–838.
    1. Virdis A, Neves MF, Amiri F, Viel E, Touyz RM, et al. (2002) Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 40: 504–510.
    1. White M, Ducharme A, Ibrahim R, Whittom L, Lavoie J, et al. (2006) Increased systemic inflammation and oxidative stress in patients with worsening congestive heart failure: improvement after short-term inotropic support. Clin Sci 110 (4) 483–9.
    1. Zimmerman DL, Swedko PJ, Posen GA, Burns KD (2003) Daily hemofiltration with a simplified method of delivery. ASAIO J 426–429.
    1. Zoccali C, Mallamaci F, Tripepi G, Benedetto FA, Cottini E, et al. (1991) Prediction of left ventricular geometry by clinic, pre-dialysis and 24 hour ambulatory BP monitoring in haemodialysis patients. J Hypertens 17: 355–360.
    1. Song JH, Lee SW, Suh CK, Kim MJ (2002) Time-averaged concentration of dialysate sodium relates with sodium load and interdialytic weight gain during sodium-profiling hemodialysis. Am J Kidney Dis 40 (2) 291–301.
    1. de Paula FM, Peixoto AJ, Pinto LV, Dorigo D, Patricio PJM, et al. (2004) Clinical consequences of an individualized dialysate sodium prescription in hemodialysis patients. Kidney Int 66: 1232–1238.
    1. Thein H, Haloob I, Marshall MR (2007) Associations of a facility level decrease in dialysate sodium concentration with blood pressure and interdialytic weight gain. Nephrol Dial Transplant 22: 2630–2639.
    1. Penne EL, Levin NW, Kotanko P (2010) Improving volume status by comprehensive dietary and dialytic sodium management in chronic hemodialysis patients. Blood Purif 30: 71–78.
    1. Oberleithner H, Riethmuller C, Schillers H, MacGregor GA, de Wardener HE, et al. (2007) Plasma sodium stiffens vascular endothelium and reduced nitric oxide release. PNAS 104 (41) 16281–16286.
    1. Agarwal R, Alborzi P, Satyan S, Light RP (2009) Dry weight reduction in hypertensive hemodialysis patients (DRIP): a randomized controlled trial. Hypertension 53: 500–507.
    1. Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa K (2011) Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and the neural mechanisms of hypertension. Am J Physiol - Regulatory, Integrative and Comparative Physiology 300: R818–R826.
    1. Schulz E, Gori T, Munzel T (2011) Oxidative stress and endothelial dysfunction in hypertension. Hypertension Research 34: 665–673.
    1. Yoon JW, Pahl MV, Viziri ND (2007) Spontaneous leukocyte activation and oxygen-free radical generation in end-stage renal disease. Kidney Int 71: 167–172.
    1. Di Marco GS, Hausberg M, Hillebrand U, Rustemeyer P, Wittkowksi W, et al. (2008) Increased inorganic phosphate induces human endothelial cell apoptosis in vitro. Am J Physiol Renal Physiol 294: F1381–F1387.
    1. Ayus JC, Mizani MR, Achinger SG, Thadhani R, Go AS, et al. (2005) Effects of short daily versus conventional hemodialysis on left ventricular hypertrophy and inflammatory markers: a prospective controlled study. J Am Soc Nephrol 16: 2778–2788.
    1. Jefferies HJ, Virk B, Schiller B, Moran J, McIntyre CW (2011) Frequent hemodialysis schedules are associated with reduced levels of dialysis-induced cardiac injury (myocardial stunning). Clin J Am Soc Nephrol 6: 1326–1332.

Source: PubMed

3
Suscribir