Suppression of Tumorigenicity 2 in Heart Failure With Preserved Ejection Fraction

Omar F AbouEzzeddine, Paul M McKie, Shannon M Dunlay, Susanna R Stevens, G Michael Felker, Barry A Borlaug, Horng H Chen, Russell P Tracy, Eugene Braunwald, Margaret M Redfield, Omar F AbouEzzeddine, Paul M McKie, Shannon M Dunlay, Susanna R Stevens, G Michael Felker, Barry A Borlaug, Horng H Chen, Russell P Tracy, Eugene Braunwald, Margaret M Redfield

Abstract

Background: Soluble suppression of tumorigenicity 2 (sST2) receptor is a biomarker that is elevated in certain systemic inflammatory diseases. Comorbidity-driven microvascular inflammation is postulated to play a key role in heart failure with preserved ejection fraction (HFpEF) pathophysiology, but data on how sST2 relates to clinical characteristics or inflammatory conditions or biomarkers in HFpEF are limited. We sought to determine circulating levels and clinical correlates of sST2 in HFpEF.

Methods and results: At enrollment, patients (n=174) from the Phosphodiesterase-5 Inhibition to Improve Clinical Status And Exercise Capacity in Diastolic Heart Failure (RELAX) trial of sildenafil in HFpEF had sST2 levels measured. Clinical characteristics; cardiac structure and function; exercise performance; and biomarkers of neurohumoral activation, systemic inflammation and fibrosis, and myocardial necrosis were assessed in relation to sST2 levels. Median sST2 levels in male and female HFpEF patients were 36.7 ng/mL (range 30.9-49.2 ng/mL; reference range 4-31 ng/mL) and 30.8 ng/mL (range 25.3-39.3 ng/mL; reference range 2-21 ng/mL), respectively. Among HFpEF patients, higher sST2 levels were associated with the presence of diabetes mellitus; atrial fibrillation; renal dysfunction; right ventricular pressure overload and dysfunction; systemic congestion; exercise intolerance; and biomarkers of systemic inflammation and fibrosis, neurohumoral activation, and myocardial necrosis (P<0.05 for all). sST2 was not associated with left ventricular structure or left ventricular systolic or diastolic function.

Conclusions: In HFpEF, sST2 levels were associated with proinflammatory comorbidities, right ventricular pressure overload and dysfunction, and systemic congestion but not with left ventricular geometry or function. These data suggest that ST2 may be a marker of systemic inflammation in HFpEF and potentially of extracardiac origin.

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00763867.

Keywords: biomarker; diastolic heart failure.

© 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

Figures

Figure 1
Figure 1
Frequency distribution of suppression of tumorigenicity 2 (ST2) levels in heart failure with preserved ejection fraction overall and by sex (insert). The distribution of baseline ST2 levels in the RELAX trial cohort (n=174). Overall, median ST2 levels were 34.3 ng/mL (25th–75th percentiles 26.9–46.6 ng/mL) and were higher in male participants (36.7 ng/mL [25th–75th percentiles 30.9–49.2 ng/mL]) than in female participants (30.8 ng/mL [25th–75th percentiles 25.3–39.3 ng/mL]).
Figure 2
Figure 2
The relationship between suppression of tumorigenicity 2 (ST2) and biomarkers in heart failure with preserved ejection fraction. ST2 was associated with endothelin 1, high‐sensitivity C‐reactive protein (CRP), C‐telopeptide for type I collagen (CITP), and troponin I but not aldosterone or pro–collagen III N‐terminal peptide (PIIINP) levels. *Adjusted for sex. Ln indicates log transformed.

References

    1. Bergers G, Reikerstorfer A, Braselmann S, Graninger P, Busslinger M. Alternative promoter usage of the Fos‐responsive gene Fit‐1 generates mRNA isoforms coding for either secreted or membrane‐bound proteins related to the IL‐1 receptor. EMBO J. 1994;13:1176–1188.
    1. Pascual‐Figal DA, Januzzi JL. The biology of ST2: the International ST2 Consensus Panel. Am J Cardiol. 2015;115:3B–7B.
    1. Kakkar R, Lee RT. The IL‐33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov. 2008;7:827–840.
    1. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL‐33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117:1538–1549.
    1. Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga S, Solomon SD, Rouleau JL, Lee RT. Expression and regulation of ST2, an interleukin‐1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106:2961–2966.
    1. Manzano‐Fernandez S, Mueller T, Pascual‐Figal D, Truong QA, Januzzi JL. Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am J Cardiol. 2011;107:259–267.
    1. Broch K, Ueland T, Nymo SH, Kjekshus J, Hulthe J, Muntendam P, McMurray JJ, Wikstrand J, Cleland JG, Aukrust P, Gullestad L. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. Eur J Heart Fail. 2012;14:268–277.
    1. Anand IS, Rector TS, Kuskowski M, Snider J, Cohn JN. Prognostic value of soluble ST2 in the Valsartan Heart Failure Trial. Circ Heart Fail. 2014;7:418–426.
    1. Rehman SU, Mueller T, Januzzi JL Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol. 2008;52:1458–1465.
    1. Felker GM, Fiuzat M, Thompson V, Shaw LK, Neely ML, Adams KF, Whellan DJ, Donahue MP, Ahmad T, Kitzman DW, Piña IL, Zannad F, Kraus WE, O'Connor CM. Soluble ST2 in ambulatory patients with heart failure: association with functional capacity and long‐term outcomes. Circ Heart Fail. 2013;6:1172–1179.
    1. Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P, Dries DL, Tang WH, Wu AH, Fang JC, Boxer R, Sweitzer NK, Levy WC, Goldberg LR, Jessup M, Cappola TP. High‐sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 2011;4:180–187.
    1. Bayes‐Genis A, de Antonio M, Galan A, Sanz H, Urrutia A, Cabanes R, Cano L, González B, Díez C, Pascual T, Elosúa R, Lupón J. Combined use of high‐sensitivity ST2 and NTproBNP to improve the prediction of death in heart failure. Eur J Heart Fail. 2012;14:32–38.
    1. Boisot S, Beede J, Isakson S, Chiu A, Clopton P, Januzzi J, Maisel AS, Fitzgerald RL. Serial sampling of ST2 predicts 90‐day mortality following destabilized heart failure. J Card Fail. 2008;14:732–738.
    1. Maisel A, Xue Y, van Veldhuisen DJ, Voors AA, Jaarsma T, Pang PS, Butler J, Pitt B, Clopton P, de Boer RA. Effect of spironolactone on 30‐day death and heart failure rehospitalization (from the COACH Study). Am J Cardiol. 2014;114:737–742.
    1. Januzzi JL Jr, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, O'Donoghue M, Sakhuja R, Chen AA, van Kimmenade RR, Lewandrowski KB, Lloyd‐Jones DM, Wu AH. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro‐Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50:607–613.
    1. Pascual‐Figal DA, Manzano‐Fernandez S, Boronat M, Casas T, Garrido IP, Bonaque JC, Pastor‐Perez F, Valdés M, Januzzi JL. Soluble ST2, high‐sensitivity troponin T‐ and N‐terminal pro‐B‐type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. Eur J Heart Fail. 2011;13:718–725.
    1. Chen WY, Hong J, Gannon J, Kakkar R, Lee RT. Myocardial pressure overload induces systemic inflammation through endothelial cell IL‐33. Proc Natl Acad Sci USA. 2015;112:7249–7254.
    1. Bartunek J, Delrue L, Van Durme F, Muller O, Casselman F, De Wiest B, Croes R, Verstreken S, Goethals M, de Raedt H, Sarma J, Joseph L, Vanderheyden M, Weinberg EO. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J Am Coll Cardiol. 2008;52:2166–2174.
    1. Truong QA, Januzzi JL, Szymonifka J, Thai WE, Wai B, Lavender Z, Sharma U, Sandoval RM, Grunau ZS, Basnet S, Babatunde A, Ajijola OA, Min JK, Singh JP. Coronary sinus biomarker sampling compared to peripheral venous blood for predicting outcomes in patients with severe heart failure undergoing cardiac resynchronization therapy: the BIOCRT study. Heart Rhythm. 2014;11:2167–2175.
    1. Kaye DM, Mariani JA, van Empel V, Maeder MT. Determinants and implications of elevated soluble ST2 levels in heart failure. Int J Cardiol. 2014;176:1242–1243.
    1. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–271.
    1. Haykowsky MJ, Brubaker PH, Morgan TM, Kritchevsky S, Eggebeen J, Kitzman DW. Impaired aerobic capacity and physical functional performance in older heart failure patients with preserved ejection fraction: role of lean body mass. J Gerontol A Biol Sci Med Sci. 2013;68:968–975.
    1. Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM, Haykowsky M. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2014;306:H1364–H1370.
    1. Haykowsky MJ, Tomczak CR, Scott JM, Paterson DI, Kitzman DW. Determinants of exercise intolerance in patients with heart failure and reduced or preserved ejection fraction. J Appl Physiol (1985). 2015;119:739–744.
    1. Dhakal BP, Malhotra R, Murphy RM, Pappagianopoulos PP, Baggish AL, Weiner RB, Houstis NE, Eisman AS, Hough SS, Lewis GD. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction: the role of abnormal peripheral oxygen extraction. Circ Heart Fail. 2015;8:286–294.
    1. Yndestad A, Marshall AK, Hodgkinson JD, Tham el L, Sugden PH, Clerk A. Modulation of interleukin signalling and gene expression in cardiac myocytes by endothelin‐1. Int J Biochem Cell Biol. 2010;42:263–272.
    1. Miller AM, Xu D, Asquith DL, Denby L, Li Y, Sattar N, Baker AH, McInnes IB, Liew FY. IL‐33 reduces the development of atherosclerosis. J Exp Med. 2008;205:339–346.
    1. Paulus WJ. Cytokines and heart failure. Heart Fail Monit. 2000;1:50–56.
    1. Valentova M, von Haehling S, Bauditz J, Doehner W, Ebner N, Bekfani T, Elsner S, Sliziuk V, Scherbakov N, Murín J, Anker SD, Sandek A. Intestinal congestion and right ventricular dysfunction: a link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur Heart J. 2016;37:1684–1691.
    1. Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, LeWinter MM, Rouleau JL, Bull DA, Mann DL, Deswal A, Stevenson LW, Givertz MM, Ofili EO, O'Connor CM, Felker GM, Goldsmith SR, Bart BA, McNulty SE, Ibarra JC, Lin G, Oh JK, Patel MR, Kim RJ, Tracy RP, Velazquez EJ, Anstrom KJ, Hernandez AF, Mascette AM, Braunwald E; RELAX Trial . Effect of phosphodiesterase‐5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309:1268–1277.
    1. Redfield MM, Borlaug BA, Lewis GD, Mohammed SF, Semigran MJ, Lewinter MM, Deswal A, Hernandez AF, Lee KL, Braunwald E; Heart Failure Clinical Research Network . PhosphdiesteRasE‐5 Inhibition to Improve CLinical Status and EXercise Capacity in Diastolic Heart Failure (RELAX) trial: rationale and design. Circ Heart Fail. 2012;5:653–659.
    1. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ; Chamber Quantification Writing Group; American Society of Echocardiography's Guidelines and Standards Committee; European Association of Echocardiography . Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–1463.
    1. Dieplinger B, Januzzi JL Jr, Steinmair M, Gabriel C, Poelz W, Haltmayer M, Mueller T. Analytical and clinical evaluation of a novel high‐sensitivity assay for measurement of soluble ST2 in human plasma—the Presage ST2 assay. Clin Chim Acta. 2009;409:33–40.
    1. Coglianese EE, Larson MG, Vasan RS, Ho JE, Ghorbani A, McCabe EL, Cheng S, Fradley MG, Kretschman D, Gao W, O'Connor G, Wang TJ, Januzzi JL. Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the Framingham Heart Study. Clin Chem. 2012;58:1673–1681.
    1. Zile MR, Jhund PS, Baicu CF, Claggett BL, Pieske B, Voors AA, Prescott MF, Shi V, Lefkowitz M, McMurray JJ, Solomon SD; Prospective Comparison of ARNI With ARB on Management of Heart Failure With Preserved Ejection Fraction (PARAMOUNT) Investigators . Plasma biomarkers reflecting profibrotic processes in heart failure with a preserved ejection fraction: data from the prospective comparison of ARNI with ARB on management of heart failure with preserved ejection fraction study. Circ Heart Fail. 2016;9:e002551. [Epub ahead of print].
    1. Mueller T, Jaffe AS. Soluble ST2—analytical considerations. Am J Cardiol. 2015;115:8B–21B.
    1. Dieplinger B, Egger M, Haltmayer M, Kleber ME, Scharnagl H, Silbernagel G, de Boer RA, Maerz W, Mueller T. Increased soluble ST2 predicts long‐term mortality in patients with stable coronary artery disease: results from the Ludwigshafen Risk and Cardiovascular Health Study. Clin Chem. 2014;60:530–540.
    1. Kohli P, Bonaca MP, Kakkar R, Kudinova AY, Scirica BM, Sabatine MS, Murphy SA, Braunwald E, Lee RT, Morrow DA. Role of ST2 in non‐ST‐elevation acute coronary syndrome in the MERLIN‐TIMI 36 trial. Clin Chem. 2012;58:257–266.
    1. Lassus J, Gayat E, Mueller C, Peacock WF, Spinar J, Harjola VP, van Kimmenade R, Pathak A, Mueller T, Disomma S, Metra M, Pascual‐Figal D, Laribi S, Logeart D, Nouira S, Sato N, Potocki M, Parenica J, Collet C, Cohen‐Solal A, Januzzi JL Jr, Mebazaa A; GREAT‐Network . Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the Multinational Observational Cohort on Acute Heart Failure (MOCA) study. Int J Cardiol. 2013;168:2186–2194.
    1. Bajwa EK, Volk JA, Christiani DC, Harris RS, Matthay MA, Thompson BT, Januzzi JL; National Heart, Lung and Blood Institute Acute Respiratory Distress Syndrome Network . Prognostic and diagnostic value of plasma soluble suppression of tumorigenicity‐2 concentrations in acute respiratory distress syndrome. Crit Care Med. 2013;41:2521–2531.
    1. Luscher TF. Heart failure and comorbidities: renal failure, diabetes, atrial fibrillation, and inflammation. Eur Heart J. 2015;36:1415–1417.
    1. Zeyda M, Wernly B, Demyanets S, Kaun C, Hämmerle M, Hantusch B, Schranz M, Neuhofer A, Itariu BK, Keck M, Prager G, Wojta J, Stulnig TM. Severe obesity increases adipose tissue expression of interleukin‐33 and its receptor ST2, both predominantly detectable in endothelial cells of human adipose tissue. Int J Obes (Lond). 2013;37:658–665.
    1. Shah RV, Chen‐Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL. Serum levels of the interleukin‐1 receptor family member ST2, cardiac structure and function, and long‐term mortality in patients with acute dyspnea. Circ Heart Fail. 2009;2:311–319.
    1. Shah KB, Kop WJ, Christenson RH, Diercks DB, Henderson S, Hanson K, Li SY, deFilippi CR. Prognostic utility of ST2 in patients with acute dyspnea and preserved left ventricular ejection fraction. Clin Chem. 2011;57:874–882.
    1. Daniels LB, Clopton P, Iqbal N, Tran K, Maisel AS. Association of ST2 levels with cardiac structure and function and mortality in outpatients. Am Heart J. 2010;160:721–728.
    1. Xanthakis V, Larson MG, Wollert KC, Aragam J, Cheng S, Ho J, Coglianese E, Levy D, Colucci WS, Michael Felker G, Benjamin EJ, Januzzi JL, Wang TJ, Vasan RS. Association of novel biomarkers of cardiovascular stress with left ventricular hypertrophy and dysfunction: implications for screening. J Am Heart Assoc. 2013;2:e000399 DOI: .
    1. Seliger SL, Ginsberg E, Gottdiener J, Christenson R, DeFilippi C. Soluble ST2 and galectin‐3 are associated with subclinical diastolic dysfunction in older adults. Paper presented at: American College of Cardiology (ACC) Scientific Sessions; March 29, 2014; Washington, DC.
    1. Chen LQ, de Lemos JA, Das SR, Ayers CR, Rohatgi A. Soluble ST2 is associated with all‐cause and cardiovascular mortality in a population‐based cohort: the Dallas Heart Study. Clin Chem. 2013;59:536–546.
    1. Demyanets S, Kaun C, Pentz R, Krychtiuk KA, Rauscher S, Pfaffenberger S, Zuckermann A, Aliabadi A, Gröger M, Maurer G, Huber K, Wojta J. Components of the interleukin‐33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J Mol Cell Cardiol. 2013;60:16–26.
    1. Kelly JP, Mentz RJ, Mebazaa A, Voors AA, Butler J, Roessig L, Fiuzat M, Zannad F , Pitt B, O'Connor CM, Lam CS. Patient selection in heart failure with preserved ejection fraction clinical trials. J Am Coll Cardiol. 2015;65:1668–1682.

Source: PubMed

3
Suscribir