Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury

Dasuni S Alwis, Ramesh Rajan, Dasuni S Alwis, Ramesh Rajan

Abstract

The brain's life-long capacity for experience-dependent plasticity allows adaptation to new environments or to changes in the environment, and to changes in internal brain states such as occurs in brain damage. Since the initial discovery by Hebb (1947) that environmental enrichment (EE) was able to confer improvements in cognitive behavior, EE has been investigated as a powerful form of experience-dependent plasticity. Animal studies have shown that exposure to EE results in a number of molecular and morphological alterations, which are thought to underpin changes in neuronal function and ultimately, behavior. These consequences of EE make it ideally suited for investigation into its use as a potential therapy after neurological disorders, such as traumatic brain injury (TBI). In this review, we aim to first briefly discuss the effects of EE on behavior and neuronal function, followed by a review of the underlying molecular and structural changes that account for EE-dependent plasticity in the normal (uninjured) adult brain. We then extend this review to specifically address the role of EE in the treatment of experimental TBI, where we will discuss the demonstrated sensorimotor and cognitive benefits associated with exposure to EE, and their possible mechanisms. Finally, we will explore the use of EE-based rehabilitation in the treatment of human TBI patients, highlighting the remaining questions regarding the effects of EE.

Keywords: EE; neuronal excitability; sensory cortices; traumatic brain injury.

Figures

Figure 1
Figure 1
Environmental enrichment induces morphological and molecular changes in the brain. An overview of the number of structural and molecular mechanisms that contribute to the changes in neuronal function, and ultimately, changes in behavior, seen after EE exposure. These mechanisms are thought to underlie EE-induced neural plasticity.
Figure 2
Figure 2
Behavioral benefits conferred by the timing/duration of EE relative to creation of TBI. The efficacy of EE treatment when administered pre/post-injury is represented by green full-line arrows which indicate EE timing conditions that ameliorated behaviors, while white dashed arrows indicate EE timing conditions that failed to ameliorate behaviors.

References

    1. Abou-Ismail U. A. (2011). The effects of cage enrichment on agonistic behaviour and dominance in male laboratory rats (Rattus norvegicus). Res. Vet. Sci. 90, 346–351 10.1016/j.rvsc.2010.06.010
    1. Adams J. H., Jennett B., Mclellan D. R., Murray L. S., Graham D. I. (1999). The neuropathology of the vegetative state after head injury. J. Clin. Pathol. 52, 804–806 10.1136/jcp.52.11.804
    1. Alwis D., Yan E. B., Morganti-Kossmann M. C., Rajan R. (2012). Sensory cortex underpinnings of traumatic brain injury deficits. PLoS ONE 7:e52169 10.1371/journal.pone.0052169
    1. Alwis D. S., Johnstone V., Yan E., Rajan R. (2013). Diffuse traumatic brain injury and the sensory brain. Clin. Exp. Pharmacol. Physiol. 40, 473–483 10.1111/1440-1681.12100
    1. Alwis D. S., Rajan R. (2013). Environmental enrichment causes a global potentiation of neuronal responses across stimulus complexity and lamina of sensory cortex. Front. Cell. Neurosci. 7:124 10.3389/fncel.2013.00124
    1. Andriessen T. M., Jacobs B., Vos P. E. (2010). Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J. Cell. Mol. Med. 14, 2381–2392 10.1111/j.1582-4934.2010.01164.x
    1. Angelucci F., De Bartolo P., Gelfo F., Foti F., Cutuli D., Bossu P., et al. (2009). Increased concentrations of nerve growth factor and brain-derived neurotrophic factor in the rat cerebellum after exposure to environmental enrichment. Cerebellum 8, 499–506 10.1007/s12311-009-0129-1
    1. Arendash G. W., Garcia M. F., Costa D. A., Cracchiolo J. R., Wefes I. M., Potter H. (2004). Environmental enrichment improves cognition in aged Alzheimer's transgenic mice despite stable beta-amyloid deposition. Neuroreport 15, 1751–1754 10.1097/01.wnr.0000137183.68847.4e
    1. Armstrong-James M., Fox K., Das-Gupta A. (1992). Flow of excitation within rat barrel cortex on striking a single vibrissa. J. Neurophysiol. 68, 1345–1358
    1. Artola A., Von Frijtag J. C., Fermont P. C., Gispen W. H., Schrama L. H., Kamal A., et al. (2006). Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment. Eur. J. Neurosci. 23, 261–272 10.1111/j.1460-9568.2005.04552.x
    1. Auvergne R., Lere C., El Bahh B., Arthaud S., Lespinet V., Rougier A., et al. (2002). Delayed kindling epileptogenesis and increased neurogenesis in adult rats housed in an enriched environment. Brain Res. 954, 277–285 10.1016/S0006-8993(02)03355-3
    1. Bao S., Chang E. F., Davis J. D., Gobeske K. T., Merzenich M. M. (2003). Progressive degradation and subsequent refinement of acoustic representations in the adult auditory cortex. J. Neurosci. 23, 10765–10775
    1. Baroncelli L., Bonaccorsi J., Milanese M., Bonifacino T., Giribaldi F., Manno I., et al. (2012). Enriched experience and recovery from amblyopia in adult rats: impact of motor, social and sensory components. Neuropharmacology 62, 2388–2397 10.1016/j.neuropharm.2012.02.010
    1. Baroncelli L., Braschi C., Spolidoro M., Begenisic T., Maffei L., Sale A. (2011). Brain plasticity and disease: a matter of inhibition. Neural Plast. 2011, 286073 10.1155/2011/286073
    1. Baroncelli L., Braschi C., Spolidoro M., Begenisic T., Sale A., Maffei L. (2010a). Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ. 17, 1092–1103 10.1038/cdd.2009.193
    1. Baroncelli L., Sale A., Viegi A., Maya Vetencourt J. F., De Pasquale R., Baldini S., et al. (2010b). Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp. Neurol. 226, 100–109 10.1016/j.expneurol.2010.08.009
    1. Bawden H. N., Knights R. M., Winogron H. W. (1985). Speeded performance following head injury in children. J. Clin. Exp. Neuropsychol. 7, 39–54 10.1080/01688638508401241
    1. Beaulieu C., Colonnier M. (1987). Effect of the richness of the environment on the cat visual cortex. J. Comp. Neurol. 266, 478–494 10.1002/cne.902660404
    1. Beaulieu C., Cynader M. (1990a). Effect of the richness of the environment on neurons in cat visual cortex. I. Receptive field properties. Brain Res. Dev. Brain Res. 53, 71–81
    1. Beaulieu C., Cynader M. (1990b). Effect of the richness of the environment on neurons in cat visual cortex. II. Spatial and temporal frequency characteristics. Brain Res. Dev. Brain Res. 53, 82–88
    1. Bechara R. G., Kelly A. M. (2013). Exercise improves object recognition memory and induces BDNF expression and cell proliferation in cognitively enriched rats. Behav. Brain Res. 245, 96–100 10.1016/j.bbr.2013.02.018
    1. Bekinschtein P., Oomen C. A., Saksida L. M., Bussey T. J. (2011). Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin. Cell Dev. Biol. 22, 536–542 10.1016/j.semcdb.2011.07.002
    1. Benali A., Weiler E., Benali Y., Dinse H. R., Eysel U. T. (2008). Excitation and inhibition jointly regulate cortical reorganization in adult rats. J. Neurosci. 28, 12284–12293 10.1523/JNEUROSCI.1952-08.2008
    1. Benaroya-Milshtein N., Hollander N., Apter A., Kukulansky T., Raz N., Wilf A., et al. (2004). Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. Eur. J. Neurosci. 20, 1341–1347 10.1111/j.1460-9568.2004.03587.x
    1. Bengoetxea H., Ortuzar N., Bulnes S., Rico-Barrio I., Lafuente J. V., Argandona E. G. (2012). Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain. Neural Plast. 2012:305693 10.1155/2012/305693
    1. Bennett E. L., Rosenzweig M. R., Diamond M. C. (1969). Rat brain: effects of environmental enrichment on wet and dry weights. Science 163, 825–826 10.1126/science.163.3869.825
    1. Berardi N., Braschi C., Capsoni S., Cattaneo A., Maffei L. (2007). Environmental enrichment delays the onset of memory deficits and reduces neuropathological hallmarks in a mouse model of Alzheimer-like neurodegeneration. J. Alzheimers Dis. 11, 359–370
    1. Berrocal Y., Pearse D. D., Singh A., Andrade C. M., Mcbroom J. S., Puentes R., et al. (2007). Social and environmental enrichment improves sensory and motor recovery after severe contusive spinal cord injury in the rat. J. Neurotrauma 24, 1761–1772 10.1089/neu.2007.0327
    1. Bezard E., Dovero S., Belin D., Duconger S., Jackson-Lewis V., Przedborski S., et al. (2003). Enriched environment confers resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and cocaine: involvement of dopamine transporter and trophic factors. J. Neurosci. 23, 10999–11007
    1. Biernaskie J., Corbett D. (2001). Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J. Neurosci. 21, 5272–5280
    1. Bindu B., Alladi P. A., Mansooralikhan B. M., Srikumar B. N., Raju T. R., Kutty B. M. (2007). Short-term exposure to an enriched environment enhances dendritic branching but not brain-derived neurotrophic factor expression in the hippocampus of rats with ventral subicular lesions. Neuroscience 144, 412–423 10.1016/j.neuroscience.2006.09.057
    1. Birch A. M., Mcgarry N. B., Kelly A. M. (2013). Short-term environmental enrichment, in the absence of exercise, improves memory, and increases NGF concentration, early neuronal survival, and synaptogenesis in the dentate gyrus in a time-dependent manner. Hippocampus 23, 437–450 10.1002/hipo.22103
    1. Blackerby W. F. (1990). Intensity of rehabilitation and length of stay. Brain Inj. 4, 167–173 10.3109/02699059009026162
    1. Boman I. L., Lindstedt M., Hemmingsson H., Bartfai A. (2004). Cognitive training in home environment. Brain Inj. 18, 985–995 10.1080/02699050410001672396
    1. Bondi C. O., Klitsch K. C., Leary J. B., Kline A. E. (2014). Environmental enrichment as a viable neurorehabilitation strategy for experimental traumatic brain injury. J. Neurotrauma 31, 873–888 10.1089/neu.2014.3328
    1. Bourgeon S., Xerri C., Coq J. O. (2004). Abilities in tactile discrimination of textures in adult rats exposed to enriched or impoverished environments. Behav. Brain Res. 153, 217–231 10.1016/j.bbr.2003.12.002
    1. Boyeson M. G., Feeney D. M. (1990). Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury. Pharmacol. Biochem. Behav. 35, 497–501 10.1016/0091-3057(90)90279-Q
    1. Brenes J. C., Padilla M., Fornaguera J. (2009). A detailed analysis of open-field habituation and behavioral and neurochemical antidepressant-like effects in postweaning enriched rats. Behav. Brain Res. 197, 125–137 10.1016/j.bbr.2008.08.014
    1. Brenner E., Mirmiran M., Uylings H. B., Van Der Gugten J. (1983). Impaired growth of the cerebral cortex of rats treated neonatally with 6-hydroxydopamine under different environmental conditions. Neurosci. Lett. 42, 13–17 10.1016/0304-3940(83)90414-7
    1. Briones T. L., Klintsova A. Y., Greenough W. T. (2004). Stability of synaptic plasticity in the adult rat visual cortex induced by complex environment exposure. Brain Res. 1018, 130–135 10.1016/j.brainres.2004.06.001
    1. Briones T. L., Woods J., Rogozinska M. (2013). Decreased neuroinflammation and increased brain energy homeostasis following environmental enrichment after mild traumatic brain injury is associated with improvement in cognitive function. Acta Neuropathol. Commun. 1, 57 10.1186/2051-5960-1-57
    1. Brosseau-Lachaine O., Gagnon I., Forget R., Faubert J. (2008). Mild traumatic brain injury induces prolonged visual processing deficits in children. Brain Inj. 22, 657–668 10.1080/02699050802203353
    1. Bruel-Jungerman E., Laroche S., Rampon C. (2005). New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur. J. Neurosci. 21, 513–521 10.1111/j.1460-9568.2005.03875.x
    1. Buchhold B., Mogoanta L., Suofu Y., Hamm A., Walker L., Kessler C., et al. (2007). Environmental enrichment improves functional and neuropathological indices following stroke in young and aged rats. Restor. Neurol. Neurosci. 25, 467–484
    1. Buonomano D. V., Merzenich M. M. (1998). Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 10.1146/annurev.neuro.21.1.149
    1. Buonviso N., Chaput M. (2000). Olfactory experience decreases responsiveness of the olfactory bulb in the adult rat. Neuroscience 95, 325–332 10.1016/S0306-4522(99)00450-9
    1. Caeyenberghs K., Wenderoth N., Smits-Engelsman B. C., Sunaert S., Swinnen S. P. (2009). Neural correlates of motor dysfunction in children with traumatic brain injury: exploration of compensatory recruitment patterns. Brain 132, 684–694 10.1093/brain/awn344
    1. Cai R., Guo F., Zhang J., Xu J., Cui Y., Sun X. (2009). Environmental enrichment improves behavioral performance and auditory spatial representation of primary auditory cortical neurons in rat. Neurobiol. Learn. Mem. 91, 366–376 10.1016/j.nlm.2009.01.005
    1. Camel J. E., Withers G. S., Greenough W. T. (1986). Persistence of visual cortex dendritic alterations induced by postweaning exposure to a “superenriched” environment in rats. Behav. Neurosci. 100, 810–813 10.1037/0735-7044.100.6.810
    1. Chang E. F., Bao S., Imaizumi K., Schreiner C. E., Merzenich M. M. (2005). Development of spectral and temporal response selectivity in the auditory cortex. Proc. Natl. Acad. Sci. U.S.A. 102, 16460–16465 10.1073/pnas.0508239102
    1. Chang E. F., Merzenich M. M. (2003). Environmental noise retards auditory cortical development. Science 300, 498–502 10.1126/science.1082163
    1. Chen X., Li Y., Kline A. E., Dixon C. E., Zafonte R. D., Wagner A. K. (2005). Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury. Neuroscience 135, 11–17 10.1016/j.neuroscience.2005.05.041
    1. Cheng B., Furukawa K., O'Keefe J. A., Goodman Y., Kihiko M., Fabian T., et al. (1995). Basic fibroblast growth factor selectively increases AMPA-receptor subunit GluR1 protein level and differentially modulates Ca2+ responses to AMPA and NMDA in hippocampal neurons. J. Neurochem. 65, 2525–2536 10.1046/j.1471-4159.1995.65062525.x
    1. Cheng J. P., Shaw K. E., Monaco C. M., Hoffman A. N., Sozda C. N., Olsen A. S., et al. (2012). A relatively brief exposure to environmental enrichment after experimental traumatic brain injury confers long-term cognitive benefits. J. Neurotrauma 29, 2684–2688 10.1089/neu.2012.2560
    1. Cicerone K. D., Mott T., Azulay J., Friel J. C. (2004). Community integration and satisfaction with functioning after intensive cognitive rehabilitation for traumatic brain injury. Arch. Phys. Med. Rehabil. 85, 943–950 10.1016/j.apmr.2003.07.019
    1. Cifu D. X., Kreutzer J. S., Kolakowsky-Hayner S. A., Marwitz J. H., Englander J. (2003). The relationship between therapy intensity and rehabilitative outcomes after traumatic brain injury: a multicenter analysis. Arch. Phys. Med. Rehabil. 84, 1441–1448 10.1016/S0003-9993(03)00272-7
    1. Condon C. D., Weinberger N. M. (1991). Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behav. Neurosci. 105, 416–430 10.1037/0735-7044.105.3.416
    1. Connor J. R., Wang E. C., Diamond M. C. (1982). Increased length of terminal dendritic segments in old adult rats' somatosensory cortex: an environmentally induced response. Exp. Neurol. 78, 466–470 10.1016/0014-4886(82)90064-4
    1. Coq J. O., Xerri C. (1998). Environmental enrichment alters organizational features of the forepaw representation in the primary somatosensory cortex of adult rats. Exp. Brain Res. 121, 191–204 10.1007/s002210050452
    1. Cracchiolo J. R., Mori T., Nazian S. J., Tan J., Potter H., Arendash G. W. (2007). Enhanced cognitive activity–over and above social or physical activity–is required to protect Alzheimer's mice against cognitive impairment, reduce Abeta deposition, and increase synaptic immunoreactivity. Neurobiol. Learn. Mem. 88, 277–294 10.1016/j.nlm.2007.07.007
    1. Dahlqvist P., Ronnback A., Bergstrom S. A., Soderstrom I., Olsson T. (2004). Environmental enrichment reverses learning impairment in the Morris water maze after focal cerebral ischemia in rats. Eur. J. Neurosci. 19, 2288–2298 10.1111/j.0953-816X.2004.03248.x
    1. Davis A. S., Dean R. S. (2010). Assessing sensory-motor deficits in pediatric traumatic brain injury. Appl. Neuropsychol. 17, 104–109 10.1080/09084281003708951
    1. De Bartolo P., Gelfo F., Burello L., De Giorgio A., Petrosini L., Granato A. (2011). Plastic changes in striatal fast-spiking interneurons following hemicerebellectomy and environmental enrichment. Cerebellum 10, 624–632 10.1007/s12311-011-0275-0
    1. De Villers-Sidani E., Merzenich M. M. (2011). Lifelong plasticity in the rat auditory cortex: basic mechanisms and role of sensory experience. Prog. Brain Res. 191, 119–131 10.1016/B978-0-444-53752-2.00009-6
    1. Devonshire I. M., Dommett E. J., Grandy T. H., Halliday A. C., Greenfield S. A. (2010). Environmental enrichment differentially modifies specific components of sensory-evoked activity in rat barrel cortex as revealed by simultaneous electrophysiological recordings and optical imaging in vivo. Neuroscience 170, 662–669 10.1016/j.neuroscience.2010.07.029
    1. De Witt B. W., Ehrenberg K. M., Mcaloon R. L., Panos A. H., Shaw K. E., Raghavan P. V., et al. (2011). Abbreviated environmental enrichment enhances neurobehavioral recovery comparably to continuous exposure after traumatic brain injury. Neurorehabil. Neural Repair 25, 343–350 10.1177/1545968310390520
    1. Diamond M. C., Ingham C. A., Johnson R. E., Bennett E. L., Rosenzweig M. R. (1976). Effects of environment on morphology of rat cerebral cortex and hippocampus. J. Neurobiol. 7, 75–85 10.1002/neu.480070108
    1. Diamond M. C., Lindner B., Raymond A. (1967). Extensive cortical depth measurements and neuron size increases in the cortex of environmentally enriched rats. J. Comp. Neurol. 131, 357–364 10.1002/cne.901310305
    1. Diamond M. C., Rosenzweig M. R., Bennett E. L., Lindner B., Lyon L. (1972). Effects of environmental enrichment and impoverishment on rat cerebral cortex. J. Neurobiol. 3, 47–64 10.1002/neu.480030105
    1. Diamond M. E., Armstrong-James M., Ebner F. F. (1993). Experience-dependent plasticity in adult rat barrel cortex. Proc. Natl. Acad. Sci. U.S.A. 90, 2082–2086 10.1073/pnas.90.5.2082
    1. Diamond M. E., Huang W., Ebner F. F. (1994). Laminar comparison of somatosensory cortical plasticity. Science 265, 1885–1888 10.1126/science.8091215
    1. Dietrich W. D., Alonso O., Busto R., Ginsberg M. D. (1994). Widespread metabolic depression and reduced somatosensory circuit activation following traumatic brain injury in rats. J. Neurotrauma 11, 629–640 10.1089/neu.1994.11.629
    1. Ding M. C., Lo E. H., Stanley G. B. (2008). Sustained focal cortical compression reduces electrically-induced seizure threshold. Neuroscience 154, 551–555 10.1016/j.neuroscience.2008.03.088
    1. Ding M. C., Wang Q., Lo E. H., Stanley G. B. (2011). Cortical excitation and inhibition following focal traumatic brain injury. J. Neurosci. 31, 14085–14094 10.1523/JNEUROSCI.3572-11.2011
    1. Drapeau E., Mayo W., Aurousseau C., Le Moal M., Piazza P. V., Abrous D. N. (2003). Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc. Natl. Acad. Sci. U.S.A. 100, 14385–14390 10.1073/pnas.2334169100
    1. Drapeau E., Montaron M. F., Aguerre S., Abrous D. N. (2007). Learning-induced survival of new neurons depends on the cognitive status of aged rats. J. Neurosci. 27, 6037–6044 10.1523/JNEUROSCI.1031-07.2007
    1. Draper K., Ponsford J. (2008). Cognitive functioning ten years following traumatic brain injury and rehabilitation. Neuropsychology 22, 618–625 10.1037/0894-4105.22.5.618
    1. Draper K., Ponsford J. (2009). Long-term outcome following traumatic brain injury: a comparison of subjective reports by those injured and their relatives. Neuropsychol. Rehabil. 19, 645–661 10.1080/17405620802613935
    1. Du X., Leang L., Mustafa T., Renoir T., Pang T. Y., Hannan A. J. (2012). Environmental enrichment rescues female-specific hyperactivity of the hypothalamic-pituitary-adrenal axis in a model of Huntington's disease. Transl. Psychiatry 2, e133 10.1038/tp.2012.58
    1. Duffy S. N., Craddock K. J., Abel T., Nguyen P. V. (2001). Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. Learn. Mem. 8, 26–34 10.1101/lm.36301
    1. Eckert M. J., Abraham W. C. (2010). Physiological effects of enriched environment exposure and LTP induction in the hippocampus in vivo do not transfer faithfully to in vitro slices. Learn. Mem. 17, 480–484 10.1101/lm.1822610
    1. Eckert M. J., Abraham W. C. (2013). Effects of environmental enrichment exposure on synaptic transmission and plasticity in the hippocampus. Curr. Top. Behav. Neurosci. 15, 165–187 10.1007/7854_2012_215
    1. Einon D. F., Morgan M. J., Will B. E. (1980). Effects of post-operative environment on recovery from dorsal hippocampal lesions in young rats: tests of spatial memory and motor transfer. Q. J. Exp. Psychol. 32, 137–148 10.1080/00335558008248239
    1. Elliott B. M., Grunberg N. E. (2005). Effects of social and physical enrichment on open field activity differ in male and female Sprague-Dawley rats. Behav. Brain Res. 165, 187–196 10.1016/j.bbr.2005.06.025
    1. Engineer N. D., Percaccio C. R., Pandya P. K., Moucha R., Rathbun D. L., Kilgard M. P. (2004). Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons. J. Neurophysiol. 92, 73–82 10.1152/jn.00059.2004
    1. Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U.S.A. 108, 3017–3022 10.1073/pnas.1015950108
    1. Fagiolini M., Hensch T. K. (2000). Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404, 183–186 10.1038/35004582
    1. Faherty C. J., Raviie Shepherd K., Herasimtschuk A., Smeyne R. J. (2005). Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Brain Res. Mol. Brain Res. 134, 170–179 10.1016/j.molbrainres.2004.08.008
    1. Falkenberg T., Mohammed A. K., Henriksson B., Persson H., Winblad B., Lindefors N. (1992). Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neurosci. Lett. 138, 153–156 10.1016/0304-3940(92)90494-R
    1. Farmer J., Zhao X., Van Praag H., Wodtke K., Gage F. H., Christie B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124, 71–79 10.1016/j.neuroscience.2003.09.029
    1. Faul M., Xu L., Wald M. M., Coronado V. G. (2010). Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths 2002-2006 Atlanta, GA: Centers for Disease Control and Prevention; National Center for Injury Prevention and Control
    1. Faverjon S., Silveira D. C., Fu D. D., Cha B. H., Akman C., Hu Y., et al. (2002). Beneficial effects of enriched environment following status epilepticus in immature rats. Neurology 59, 1356–1364 10.1212/01.WNL.0000033588.59005.55
    1. Fernandez-Teruel A., Gimenez-Llort L., Escorihuela R. M., Gil L., Aguilar R., Steimer T., et al. (2002). Early-life handling stimulation and environmental enrichment: are some of their effects mediated by similar neural mechanisms? Pharmacol. Biochem. Behav. 73, 233–245 10.1016/S0091-3057(02)00787-6
    1. Finger S. (1978). Environmental Attenuation of Brain Lesion Symptoms. London: Plenum Press
    1. Fletcher M. L., Wilson D. A. (2003). Olfactory bulb mitral-tufted cell plasticity: odorant-specific tuning reflects previous odorant exposure. J. Neurosci. 23, 6946–6955
    1. Folmer R. L., Billings C. J., Diedesch-Rouse A. C., Gallun F. J., Lew H. L. (2011). Electrophysiological assessments of cognition and sensory processing in TBI: applications for diagnosis, prognosis and rehabilitation. Int. J. Psychophysiol. 82, 4–15 10.1016/j.ijpsycho.2011.03.005
    1. Foster T. C., Dumas T. C. (2001). Mechanism for increased hippocampal synaptic strength following differential experience. J. Neurophysiol. 85, 1377–1383
    1. Foster T. C., Gagne J., Massicotte G. (1996). Mechanism of altered synaptic strength due to experience: relation to long-term potentiation. Brain Res. 736, 243–250
    1. Frasca D., Tomaszczyk J., McFadyen B. J., Green R. E. (2013). Traumatic brain injury and post-acute decline: what role does environmental enrichment play? A scoping review. Front. Hum. Neurosci. 7:31 10.3389/fnhum.2013.00031
    1. Frechette M., Rennie K., Pappas B. A. (2009). Developmental forebrain cholinergic lesion and environmental enrichment: behaviour, CA1 cytoarchitecture and neurogenesis. Brain Res. 1252, 172–182 10.1016/j.brainres.2008.11.082
    1. Frenkel M. Y., Bear M. F. (2004). How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44, 917–923 10.1016/j.neuron.2004.12.003
    1. Frick K. M., Fernandez S. M. (2003). Enrichment enhances spatial memory and increases synaptophysin levels in aged female mice. Neurobiol. Aging 24, 615–626 10.1016/S0197-4580(02)00138-0
    1. Fryer L. J., Haffey W. J. (1987). Cognitive rehabilitation and community readaptation: outcomes from two program models. J. Head Trauma Rehabil. 2, 51–63 10.1097/00001199-198709000-00007
    1. Fujiwara Y., Chaves P. H., Yoshida H., Amano H., Fukaya T., Watanabe N., et al. (2009). Intellectual activity and likelihood of subsequently improving or maintaining instrumental activities of daily living functioning in community-dwelling older Japanese: a longitudinal study. Int. J. Geriatr. Psychiatry 24, 547–555 10.1002/gps.2148
    1. Furini C. R., Rossato J. I., Bitencourt L. L., Medina J. H., Izquierdo I., Cammarota M. (2010). Beta-adrenergic receptors link NO/sGC/PKG signaling to BDNF expression during the consolidation of object recognition long-term memory. Hippocampus 20, 672–683 10.1002/hipo.20656
    1. Gagnon I., Forget R., Sullivan S. J., Friedman D. (1998). Motor performance following a mild traumatic brain injury in children: an exploratory study. Brain Inj. 12, 843–853 10.1080/026990598122070
    1. Galani R., Berthel M. C., Lazarus C., Majchrzak M., Barbelivien A., Kelche C., et al. (2007). The behavioral effects of enriched housing are not altered by serotonin depletion but enrichment alters hippocampal neurochemistry. Neurobiol. Learn. Mem. 88, 1–10 10.1016/j.nlm.2007.03.009
    1. Gardner E. B., Boitano J. J., Mancino N. S., D'amico D. P. (1975). Environmental enrichment and deprivation: effects on learning, memory and exploration. Physiol. Behav. 14, 321–327 10.1016/0031-9384(75)90040-2
    1. Gaulke L. J., Horner P. J., Fink A. J., Mcnamara C. L., Hicks R. R. (2005). Environmental enrichment increases progenitor cell survival in the dentate gyrus following lateral fluid percussion injury. Brain Res. Mol. Brain Res. 141, 138–150 10.1016/j.molbrainres.2005.08.011
    1. Gelfo F., Cutuli D., Foti F., Laricchiuta D., De Bartolo P., Caltagirone C., et al. (2011). Enriched environment improves motor function and increases neurotrophins in hemicerebellar lesioned rats. Neurorehabil. Neural Repair 25, 243–252 10.1177/1545968310380926
    1. Gibson E. J. (1953). Improvement in perceptual judgments as a function of controlled practice or training. Psychol. Bull. 50, 401–431 10.1037/h0055517
    1. Globus A., Rosenzweig M. R., Bennett E. L., Diamond M. C. (1973). Effects of differential experience on dendritic spine counts in rat cerebral cortex. J. Comp. Physiol. Psychol. 82, 175–181 10.1037/h0033910
    1. Gobbo O. L., O'Mara S. M. (2004). Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav. Brain Res. 152, 231–241 10.1016/j.bbr.2003.10.017
    1. Graham D. I., Mcintosh T. K., Maxwell W. L., Nicoll J. A. (2000). Recent advances in neurotrauma. J. Neuropathol. Exp. Neurol. 59, 641–651
    1. Green E. J., Greenough W. T. (1986). Altered synaptic transmission in dentate gyrus of rats reared in complex environments: evidence from hippocampal slices maintained in vitro. J. Neurophysiol. 55, 739–750
    1. Greenough W. T., Volkmar F. R. (1973). Pattern of dendritic branching in occipital cortex of rats reared in complex environments. Exp. Neurol. 40, 491–504 10.1016/0014-4886(73)90090-3
    1. Greenough W. T., Volkmar F. R., Juraska J. M. (1973). Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Exp. Neurol. 41, 371–378 10.1016/0014-4886(73)90278-1
    1. Guic E., Carrasco X., Rodriguez E., Robles I., Merzenich M. M. (2008). Plasticity in primary somatosensory cortex resulting from environmentally enriched stimulation and sensory discrimination training. Biol. Res. 41, 425–437 10.4067/S0716-97602008000400008
    1. Haaland K. Y., Temkin N., Randahl G., Dikmen S. (1994). Recovery of simple motor skills after head injury. J. Clin. Exp. Neuropsychol. 16, 448–456 10.1080/01688639408402655
    1. Hall K. D., Lifshitz J. (2010). Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses. Brain Res. 1323, 161–173 10.1016/j.brainres.2010.01.067
    1. Hamm R. J., Temple M. D., O'Dell D. M., Pike B. R., Lyeth B. G. (1996). Exposure to environmental complexity promotes recovery of cognitive function after traumatic brain injury. J. Neurotrauma 13, 41–47 10.1089/neu.1996.13.41
    1. Harati H., Barbelivien A., Herbeaux K., Muller M. A., Engeln M., Kelche C., et al. (2013). Lifelong environmental enrichment in rats: impact on emotional behavior, spatial memory vividness, and cholinergic neurons over the lifespan. Age (Dordr). 35, 1027–1043 10.1007/s11357-012-9424-8
    1. Harauzov A., Spolidoro M., Dicristo G., De Pasquale R., Cancedda L., Pizzorusso T., et al. (2010). Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J. Neurosci. 30, 361–371 10.1523/JNEUROSCI.2233-09.2010
    1. Hayden M. E., Plenger P., Bison K., Kowalske K., Masel B., Qualls D. (2013). Treatment effect versus pretreatment recovery in persons with traumatic brain injury: a study regarding the effectiveness of postacute rehabilitation. PM R 5, 319–327; quiz 327. 10.1016/j.pmrj.2012.12.005
    1. Hebb D. O. (1947). The effects of early experience on problem-solving at maturity. Am. Psychol. 2, 306–307
    1. Hebb D. O. (1949). The Organization of Behaviour. New York, NY: Wiley
    1. Held J. M., Gordon J., Gentile A. M. (1985). Environmental influences on locomotor recovery following cortical lesions in rats. Behav. Neurosci. 99, 678–690 10.1037/0735-7044.99.4.678
    1. Heldt S. A., Stanek L., Chhatwal J. P., Ressler K. J. (2007). Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol. Psychiatry 12, 656–670 10.1038/sj.mp.4001957
    1. Henriksson B. G., Soderstrom S., Gower A. J., Ebendal T., Winblad B., Mohammed A. H. (1992). Hippocampal nerve growth factor levels are related to spatial learning ability in aged rats. Behav. Brain Res. 48, 15–20 10.1016/S0166-4328(05)80134-2
    1. Hensch T. K., Fagiolini M. (2005). Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. Prog. Brain Res. 147, 115–124 10.1016/S0079-6123(04)47009-5
    1. Hensch T. K., Fagiolini M., Mataga N., Stryker M. P., Baekkeskov S., Kash S. F. (1998). Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 10.1126/science.282.5393.1504
    1. Hicks R. R., Numan S., Dhillon H. S., Prasad M. R., Seroogy K. B. (1997). Alterations in BDNF and NT-3 mRNAs in rat hippocampus after experimental brain trauma. Brain Res. Mol. Brain Res. 48, 401–406 10.1016/S0169-328X(97)00158-7
    1. Hicks R. R., Smith D. H., Lowenstein D. H., Saint Marie R., Mcintosh T. K. (1993). Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. J. Neurotrauma 10, 405–414 10.1089/neu.1993.10.405
    1. Hicks R. R., Zhang L., Atkinson A., Stevenon M., Veneracion M., Seroogy K. B. (2002). Environmental enrichment attenuates cognitive deficits, but does not alter neurotrophin gene expression in the hippocampus following lateral fluid percussion brain injury. Neuroscience 112, 631–637 10.1016/S0306-4522(02)00104-5
    1. Hockly E., Cordery P. M., Woodman B., Mahal A., Van Dellen A., Blakemore C., et al. (2002). Environmental enrichment slows disease progression in R6/2 Huntington's disease mice. Ann. Neurol. 51, 235–242 10.1002/ana.10094
    1. Hoffman A. N., Malena R. R., Westergom B. P., Luthra P., Cheng J. P., Aslam H. A., et al. (2008). Environmental enrichment-mediated functional improvement after experimental traumatic brain injury is contingent on task-specific neurobehavioral experience. Neurosci. Lett. 431, 226–230 10.1016/j.neulet.2007.11.042
    1. Holloway R. L., Jr. (1966). Dendritic branching: some preliminary results of training and complexity in rat visual cortex. Brain Res. 2, 393–396
    1. Hu Y. S., Xu P., Pigino G., Brady S. T., Larson J., Lazarov O. (2010). Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer's disease-linked APPswe/PS1DeltaE9 mice. FASEB J. 24, 1667–1681 10.1096/fj.09-136945
    1. Huang Z. J., Kirkwood A., Pizzorusso T., Porciatti V., Morales B., Bear M. F., et al. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 10.1016/S0092-8674(00)81509-3
    1. Hubel D. H. (1978). Effects of deprivation on the visual cortex of cat and monkey. Harvey Lect. 72, 1–51
    1. Hubel D. H., Wiesel T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 206, 419–436
    1. Hunt R. F., Boychuk J. A., Smith B. N. (2013). Neural circuit mechanisms of post-traumatic epilepsy. Front. Cell. Neurosci. 7:89 10.3389/fncel.2013.00089
    1. Ip E. Y., Giza C. C., Griesbach G. S., Hovda D. A. (2002). Effects of enriched environment and fluid percussion injury on dendritic arborization within the cerebral cortex of the developing rat. J. Neurotrauma 19, 573–585 10.1089/089771502753754055
    1. Irvine G. I., Abraham W. C. (2005). Enriched environment exposure alters the input-output dynamics of synaptic transmission in area CA1 of freely moving rats. Neurosci. Lett. 391, 32–37 10.1016/j.neulet.2005.08.031
    1. Irvine G. I., Logan B., Eckert M., Abraham W. C. (2006). Enriched environment exposure regulates excitability, synaptic transmission, and LTP in the dentate gyrus of freely moving rats. Hippocampus 16, 149–160 10.1002/hipo.20142
    1. Jadavji N. M., Kolb B., Metz G. A. (2006). Enriched environment improves motor function in intact and unilateral dopamine-depleted rats. Neuroscience 140, 1127–1138 10.1016/j.neuroscience.2006.03.027
    1. Jakkamsetti V., Chang K. Q., Kilgard M. P. (2012). Reorganization in processing of spectral and temporal input in the rat posterior auditory field induced by environmental enrichment. J. Neurophysiol. 107, 1457–1475 10.1152/jn.01057.2010
    1. Jankowsky J. L., Melnikova T., Fadale D. J., Xu G. M., Slunt H. H., Gonzales V., et al. (2005). Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer's disease. J. Neurosci. 25, 5217–5224 10.1523/JNEUROSCI.5080-04.2005
    1. Jankowsky J. L., Xu G., Fromholt D., Gonzales V., Borchelt D. R. (2003). Environmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J. Neuropathol. Exp. Neurol. 62, 1220–1227
    1. Johansson B. B., Belichenko P. V. (2002). Neuronal plasticity and dendritic spines: effect of environmental enrichment on intact and postischemic rat brain. J. Cereb. Blood Flow Metab. 22, 89–96 10.1097/00004647-200201000-00011
    1. Johansson B. B., Ohlsson A. L. (1996). Environment, social interaction, and physical activity as determinants of functional outcome after cerebral infarction in the rat. Exp. Neurol. 139, 322–327 10.1006/exnr.1996.0106
    1. Johnson E. M., Traver K. L., Hoffman S. W., Harrison C. R., Herman J. P. (2013). Environmental enrichment protects against functional deficits caused by traumatic brain injury. Front. Behav. Neurosci. 7:44 10.3389/fnbeh.2013.00044
    1. Johnstone V. P., Yan E. B., Alwis D. S., Rajan R. (2013). Cortical hypoexcitation defines neuronal responses in the immediate aftermath of traumatic brain injury. PLoS ONE 8:e63454 10.1371/journal.pone.0063454
    1. Jones T. A., Klintsova A. Y., Kilman V. L., Sirevaag A. M., Greenough W. T. (1997). Induction of multiple synapses by experience in the visual cortex of adult rats. Neurobiol. Learn. Mem. 68, 13–20 10.1006/nlme.1997.3774
    1. Jung C. K., Herms J. (2012). Structural dynamics of dendritic spines are influenced by an environmental enrichment: an in vivo imaging study. Cereb. Cortex 24, 377–384 10.1093/cercor/bhs31
    1. Kaas J. H. (1991). Plasticity of sensory and motor maps in adult mammals. Annu. Rev. Neurosci. 14, 137–167 10.1146/annurev.ne.14.030191.001033
    1. Kang H., Schuman E. M. (1995). Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658–1662 10.1126/science.7886457
    1. Kazlauckas V., Pagnussat N., Mioranzza S., Kalinine E., Nunes F., Pettenuzzo L., et al. (2011). Enriched environment effects on behavior, memory and BDNF in low and high exploratory mice. Physiol. Behav. 102, 475–480 10.1016/j.physbeh.2010.12.025
    1. Kelche C., Will B. (1982). Effects of postoperative environments following dorsal hippocampal lesions on dendritic branching and spines in rat occipital cortex. Brain Res. 245, 107–115
    1. Kempermann G. (2002). Why new neurons? Possible functions for adult hippocampal neurogenesis. J. Neurosci. 22, 635–638
    1. Kempermann G., Kuhn H. G., Gage F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 10.1038/386493a0
    1. Kempermann G., Kuhn H. G., Gage F. H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. J. Neurosci. 18, 3206–3212
    1. Kendrick K. M., Levy F., Keverne E. B. (1992). Changes in the sensory processing of olfactory signals induced by birth in sheep. Science 256, 833–836 10.1126/science.1589766
    1. Keyvani K., Sachser N., Witte O. W., Paulus W. (2004). Gene expression profiling in the intact and injured brain following environmental enrichment. J. Neuropathol. Exp. Neurol. 63, 598–609
    1. Kim B. G., Dai H. N., Mcatee M., Bregman B. S. (2008). Modulation of dendritic spine remodeling in the motor cortex following spinal cord injury: effects of environmental enrichment and combinatorial treatment with transplants and neurotrophin-3. J. Comp. Neurol. 508, 473–486 10.1002/cne.21686
    1. Kim H., Bao S. (2013). Experience-dependent over-representation of ultrasonic vocalization frequencies in the rat primary auditory cortex. J. Neurophysiol. 110, 1087–1096 10.1152/jn.00230.2013
    1. Kim M., Na D. L., Kim G. M., Adair J. C., Lee K. H., Heilman K. M. (1999). Ipsilesional neglect: behavioural and anatomical features. J. Neurol. Neurosurg. Psychiatr. 67, 35–38 10.1136/jnnp.67.1.35
    1. Kleim J. A., Jones T. A., Schallert T. (2003). Motor enrichment and the induction of plasticity before or after brain injury. Neurochem. Res. 28, 1757–1769 10.1023/A:1026025408742
    1. Kline A. E., Mcaloon R. L., Henderson K. A., Bansal U. K., Ganti B. M., Ahmed R. H., et al. (2010). Evaluation of a combined therapeutic regimen of 8-OH-DPAT and environmental enrichment after experimental traumatic brain injury. J. Neurotrauma 27, 2021–2032 10.1089/neu.2010.1535
    1. Kline A. E., Olsen A. S., Sozda C. N., Hoffman A. N., Cheng J. P. (2012). Evaluation of a combined treatment paradigm consisting of environmental enrichment and the 5-HT1A receptor agonist buspirone after experimental traumatic brain injury. J. Neurotrauma 29, 1960–1969 10.1089/neu.2012.2385
    1. Kline A. E., Wagner A. K., Westergom B. P., Malena R. R., Zafonte R. D., Olsen A. S., et al. (2007). Acute treatment with the 5-HT(1A) receptor agonist 8-OH-DPAT and chronic environmental enrichment confer neurobehavioral benefit after experimental brain trauma. Behav. Brain Res. 177, 186–194 10.1016/j.bbr.2006.11.036
    1. Klintsova A. Y., Greenough W. T. (1999). Synaptic plasticity in cortical systems. Curr. Opin. Neurobiol. 9, 203–208 10.1016/S0959-4388(99)80028-2
    1. Koh S., Magid R., Chung H., Stine C. D., Wilson D. N. (2007). Depressive behavior and selective down-regulation of serotonin receptor expression after early-life seizures: reversal by environmental enrichment. Epilepsy Behav. 10, 26–31 10.1016/j.yebeh.2006.11.008
    1. Kolb B. (1999). Synaptic plasticity and the organization of behaviour after early and late brain injury. Can. J. Exp. Psychol. 53, 62–76 10.1037/h0087300
    1. Kolb B., Gibb R. (1991). Environmental enrichment and cortical injury: behavioral and anatomical consequences of frontal cortex lesions. Cereb. Cortex 1, 189–198 10.1093/cercor/1.2.189
    1. Kolb B., Ladowski R., Gibb R., Gorny G. (1996). Does dendritic growth underly recovery from neonatal occipital lesions in rats. Behav. Brain Res. 77, 125–133 10.1016/0166-4328(95)00208-1
    1. Komitova M., Perfilieva E., Mattsson B., Eriksson P. S., Johansson B. B. (2006). Enriched environment after focal cortical ischemia enhances the generation of astroglia and NG2 positive polydendrocytes in adult rat neocortex. Exp. Neurol. 199, 113–121 10.1016/j.expneurol.2005.12.007
    1. Koopmans G. C., Deumens R., Honig W. M., Hamers F. P., Mey J., Van Kleef M., et al. (2012). Functional recovery, serotonergic sprouting, and endogenous progenitor fates in response to delayed environmental enrichment after spinal cord injury. J. Neurotrauma 29, 514–527 10.1089/neu.2011.1949
    1. Korbey S. M., Heinrichs S. C., Leussis M. P. (2008). Seizure susceptibility and locus ceruleus activation are reduced following environmental enrichment in an animal model of epilepsy. Epilepsy Behav. 12, 30–38 10.1016/j.yebeh.2007.09.013
    1. Kozlowski D. A., Nahed B. V., Hovda D. A., Lee S. M. (2004). Paradoxical effects of cortical impact injury on environmentally enriched rats. J. Neurotrauma 21, 513–519 10.1089/089771504774129856
    1. Kramer A. F., Bherer L., Colcombe S. J., Dong W., Greenough W. T. (2004). Environmental influences on cognitive and brain plasticity during aging. J. Gerontol. A Biol. Sci. Med. Sci. 59, M940–M957 10.1093/gerona/59.9.M940
    1. Kulesskaya N., Rauvala H., Voikar V. (2011). Evaluation of social and physical enrichment in modulation of behavioural phenotype in C57BL/6J female mice. PLoS ONE 6:e24755 10.1371/journal.pone.0024755
    1. Landers M. S., Knott G. W., Lipp H. P., Poletaeva I., Welker E. (2011). Synapse formation in adult barrel cortex following naturalistic environmental enrichment. Neuroscience 199, 143–152 10.1016/j.neuroscience.2011.10.040
    1. Larsson F., Winblad B., Mohammed A. H. (2002). Psychological stress and environmental adaptation in enriched vs. impoverished housed rats. Pharmacol. Biochem. Behav. 73, 193–207 10.1016/S0091-3057(02)00782-7
    1. Lazarov O., Robinson J., Tang Y. P., Hairston I. S., Korade-Mirnics Z., Lee V. M., et al. (2005). Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120, 701–713 10.1016/j.cell.2005.01.015
    1. Lazic S. E., Grote H. E., Blakemore C., Hannan A. J., Van Dellen A., Phillips W., et al. (2006). Neurogenesis in the R6/1 transgenic mouse model of Huntington's disease: effects of environmental enrichment. Eur. J. Neurosci. 23, 1829–1838 10.1111/j.1460-9568.2006.04715.x
    1. Leger M., Quiedeville A., Paizanis E., Natkunarajah S., Freret T., Boulouard M., et al. (2012). Environmental enrichment enhances episodic-like memory in association with a modified neuronal activation profile in adult mice. PLoS ONE 7:e48043 10.1371/journal.pone.0048043
    1. Leggio M. G., Mandolesi L., Federico F., Spirito F., Ricci B., Gelfo F., et al. (2005). Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav. Brain Res. 163, 78–90 10.1016/j.bbr.2005.04.009
    1. Levelt C. N., Hubener M. (2012). Critical-period plasticity in the visual cortex. Annu. Rev. Neurosci. 35, 309–330 10.1146/annurev-neuro-061010-113813
    1. Levi O., Jongen-Relo A. L., Feldon J., Roses A. D., Michaelson D. M. (2003). ApoE4 impairs hippocampal plasticity isoform-specifically and blocks the environmental stimulation of synaptogenesis and memory. Neurobiol. Dis. 13, 273–282 10.1016/S0969-9961(03)00045-7
    1. Levi O., Michaelson D. M. (2007). Environmental enrichment stimulates neurogenesis in apolipoprotein E3 and neuronal apoptosis in apolipoprotein E4 transgenic mice. J. Neurochem. 100, 202–210 10.1111/j.1471-4159.2006.04189.x
    1. Lew H. L., Weihing J., Myers P. J., Pogoda T. K., Goodrich G. L. (2010). Dual sensory impairment (DSI) in traumatic brain injury (TBI)–An emerging interdisciplinary challenge. Neurorehabilitation 26, 213–222 10.3233/NRE-2010-0557
    1. Liljequist R., Henriksson B. G., Latif N., Pham T., Winblad B., Mohammed A. H. (1993). Subchronic MK-801 treatment to juvenile rats attenuates environmental effects on adult spatial learning. Behav. Brain Res. 56, 107–114 10.1016/0166-4328(93)90027-N
    1. Linnarsson S., Bjorklund A., Ernfors P. (1997). Learning deficit in BDNF mutant mice. Eur. J. Neurosci. 9, 2581–2587 10.1111/j.1460-9568.1997.tb01687.x
    1. Lippert-Gruener M., Maegele M., Garbe J., Angelov D. N. (2007). Late effects of enriched environment (EE) plus multimodal early onset stimulation (MEOS) after traumatic brain injury in rats: ongoing improvement of neuromotor function despite sustained volume of the CNS lesion. Exp. Neurol. 203, 82–94 10.1016/j.expneurol.2006.07.025
    1. Lippert-Gruner M., Maegele M., Pokorny J., Angelov D. N., Svestkova O., Wittner M., et al. (2007). Early rehabilitation model shows positive effects on neural degeneration and recovery from neuromotor deficits following traumatic brain injury. Physiol. Res. 56, 359–368
    1. Lippert-Gruner M., Magele M., Svestkova O., Angerova Y., Ester-Bode T., Angelov D. N. (2011). Rehabilitation intervention in animal model can improve neuromotor and cognitive functions after traumatic brain injury: pilot study. Physiol. Res. 60, 367–375
    1. Little D. M., Kraus M. F., Joseph J., Geary E. K., Susmaras T., Zhou X. J., et al. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology 74, 558–564 10.1212/WNL.0b013e3181cff5d5
    1. Liu Z., D'amore P. A., Mikati M., Gatt A., Holmes G. L. (1993). Neuroprotective effect of chronic infusion of basic fibroblast growth factor on seizure-associated hippocampal damage. Brain Res. 626, 335–338
    1. Lu L., Bao G., Chen H., Xia P., Fan X., Zhang J., et al. (2003). Modification of hippocampal neurogenesis and neuroplasticity by social environments. Exp. Neurol. 183, 600–609 10.1016/S0014-4886(03)00248-6
    1. Luz Y., Shamir M. (2012). Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity. PLoS Comput. Biol. 8:e1002334 10.1371/journal.pcbi.1002334
    1. Maegele M., Lippert-Gruener M., Ester-Bode T., Garbe J., Bouillon B., Neugebauer E., et al. (2005a). Multimodal early onset stimulation combined with enriched environment is associated with reduced CNS lesion volume and enhanced reversal of neuromotor dysfunction after traumatic brain injury in rats. Eur. J. Neurosci. 21, 2406–2418 10.1111/j.1460-9568.2005.04070.x
    1. Maegele M., Lippert-Gruener M., Ester-Bode T., Sauerland S., Schafer U., Molcanyi M., et al. (2005b). Reversal of neuromotor and cognitive dysfunction in an enriched environment combined with multimodal early onset stimulation after traumatic brain injury in rats. J. Neurotrauma 22, 772–782 10.1089/neu.2005.22.772
    1. Mainardi M., Landi S., Gianfranceschi L., Baldini S., De Pasquale R., Berardi N., et al. (2010). Environmental enrichment potentiates thalamocortical transmission and plasticity in the adult rat visual cortex. J. Neurosci. Res. 88, 3048–3059 10.1002/jnr.22461
    1. Malik R., Chattarji S. (2012). Enhanced intrinsic excitability and EPSP-spike coupling accompany enriched environment-induced facilitation of LTP in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 107, 1366–1378 10.1152/jn.01009.2011
    1. Mandairon N., Stack C., Kiselycznyk C., Linster C. (2006a). Enrichment to odors improves olfactory discrimination in adult rats. Behav. Neurosci. 120, 173–179 10.1037/0735-7044.120.1.173
    1. Mandairon N., Stack C., Linster C. (2006b). Olfactory enrichment improves the recognition of individual components in mixtures. Physiol. Behav. 89, 379–384 10.1016/j.physbeh.2006.07.013
    1. Matter A. M., Folweiler K. A., Curatolo L. M., Kline A. E. (2011). Temporal effects of environmental enrichment-mediated functional improvement after experimental traumatic brain injury in rats. Neurorehabil. Neural Repair 25, 558–564 10.1177/1545968310397206
    1. Maya-Vetencourt J. F., Baroncelli L., Viegi A., Tiraboschi E., Castren E., Cattaneo A., et al. (2012). IGF-1 restores visual cortex plasticity in adult life by reducing local GABA levels. Neural Plast. 2012:250421 10.1155/2012/250421
    1. Maya Vetencourt J. F., Sale A., Viegi A., Baroncelli L., De Pasquale R., O'Leary O. F., et al. (2008). The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320, 385–388 10.1126/science.1150516
    1. McNamara K. C. S., Lisembee A. M., Lifshitz J. (2010). The whisker nuisance task identifies a late-onset, persistent sensory sensitivity in diffuse brain-injured rats. J. Neurotrauma 27, 695–706 10.1089/neu.2009.1237
    1. McQuaid R. J., Audet M. C., Anisman H. (2012). Environmental enrichment in male CD-1 mice promotes aggressive behaviors and elevated corticosterone and brain norepinephrine activity in response to a mild stressor. Stress 15, 354–360 10.3109/10253890.2011.623249
    1. Megevand P., Troncoso E., Quairiaux C., Muller D., Michel C. M., Kiss J. Z. (2009). Long-term plasticity in mouse sensorimotor circuits after rhythmic whisker stimulation. J. Neurosci. 29, 5326–5335 10.1523/JNEUROSCI.5965-08.2009
    1. Menge T., Jander S., Stoll G. (2001). Induction of the proinflammatory cytokine interleukin-18 by axonal injury. J. Neurosci. Res. 65, 332–339 10.1002/jnr.1158
    1. Mesa-Gresa P., Perez-Martinez A., Redolat R. (2013). Environmental enrichment improves novel object recognition and enhances agonistic behavior in male mice. Aggress. Behav. 39, 269–279 10.1002/ab.21481
    1. Milgram N. W., Siwak-Tapp C. T., Araujo J., Head E. (2006). Neuroprotective effects of cognitive enrichment. Ageing Res. Rev. 5, 354–369 10.1016/j.arr.2006.04.004
    1. Miller L. S., Colella B., Mikulis D., Maller J., Green R. E. (2013). Environmental enrichment may protect against hippocampal atrophy in the chronic stages of traumatic brain injury. Front. Hum. Neurosci. 7:506 10.3389/fnhum.2013.00506
    1. Minichiello L., Korte M., Wolfer D., Kuhn R., Unsicker K., Cestari V., et al. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24, 401–414 10.1016/S0896-6273(00)80853-3
    1. Mohammed A. H., Zhu S. W., Darmopil S., Hjerling-Leffler J., Ernfors P., Winblad B., et al. (2002). Environmental enrichment and the brain. Prog. Brain Res. 138, 109–133 10.1016/S0079-6123(02)38074-9
    1. Monaco C. M., Mattiola V. V., Folweiler K. A., Tay J. K., Yelleswarapu N. K., Curatolo L. M., et al. (2013). Environmental enrichment promotes robust functional and histological benefits in female rats after controlled cortical impact injury. Exp. Neurol. 247, 410–418 10.1016/j.expneurol.2013.01.007
    1. Morganti-Kossmann M. C., Rancan M., Stahel P. F., Kossmann T. (2002). Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr. Opin. Crit. Care 8, 101–105 10.1097/00075198-200204000-00002
    1. Mrsic-Flogel T. D., Hofer S. B., Ohki K., Reid R. C., Bonhoeffer T., Hubener M. (2007). Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54, 961–972 10.1016/j.neuron.2007.05.028
    1. Muthuraju S., Pati S., Rafiqul M., Abdullah J. M., Jaafar H. (2012). IntelliCage provides voluntary exercise and an enriched environment, improving locomotive activity in mice following fluid percussion injury. Basal Ganglia 2, 143–151 10.1016/j.baga.2012.06.004
    1. Naka F., Narita N., Okado N., Narita M. (2005). Modification of AMPA receptor properties following environmental enrichment. Brain Dev. 27, 275–278 10.1016/j.braindev.2004.07.006
    1. Narayan R. K., Michel M. E., Ansell B., Baethmann A., Biegon A., Bracken M. B., et al. (2002). Clinical trials in head injury. J. Neurotrauma 19, 503–557 10.1089/089771502753754037
    1. Newson R. S., Kemps E. B. (2005). General lifestyle activities as a predictor of current cognition and cognitive change in older adults: a cross-sectional and longitudinal examination. J. Gerontol. B Psychol. Sci. Soc. Sci. 60, P113–P120 10.1093/geronb/60.3.P113
    1. Nichols J. A., Jakkamsetti V. P., Salgado H., Dinh L., Kilgard M. P., Atzori M. (2007). Environmental enrichment selectively increases glutamatergic responses in layer II/III of the auditory cortex of the rat. Neuroscience 145, 832–840 10.1016/j.neuroscience.2006.12.061
    1. Nilsson M., Perfilieva E., Johansson U., Orwar O., Eriksson P. S. (1999). Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J. Neurobiol. 39, 569–578
    1. Nithianantharajah J., Barkus C., Murphy M., Hannan A. J. (2008). Gene-environment interactions modulating cognitive function and molecular correlates of synaptic plasticity in Huntington's disease transgenic mice. Neurobiol. Dis. 29, 490–504 10.1016/j.nbd.2007.11.006
    1. Nithianantharajah J., Hannan A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 7, 697–709 10.1038/nrn1970
    1. Nithianantharajah J., Levis H., Murphy M. (2004). Environmental enrichment results in cortical and subcortical changes in levels of synaptophysin and PSD-95 proteins. Neurobiol. Learn. Mem. 81, 200–210 10.1016/j.nlm.2004.02.002
    1. Norena A. J., Gourevitch B., Aizawa N., Eggermont J. J. (2006). Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nat. Neurosci. 9, 932–939 10.1038/nn1720
    1. Ohlsson A. L., Johansson B. B. (1995). Environment influences functional outcome of cerebral infarction in rats. Stroke 26, 644–649 10.1161/01.STR.26.4.644
    1. Ortuzar N., Rico-Barrio I., Bengoetxea H., Argandona E. G., Lafuente J. V. (2013). VEGF reverts the cognitive impairment induced by a focal traumatic brain injury during the development of rats raised under environmental enrichment. Behav. Brain Res. 246, 36–46 10.1016/j.bbr.2013.02.036
    1. Park E., Bell J. D., Baker A. J. (2008). Traumatic brain injury: can the consequences be stopped? CMAJ 178, 1163–1170 10.1503/cmaj.080282
    1. Park N. W., Ingles J. L. (2001). Effectiveness of attention rehabilitation after an acquired brain injury: a meta-analysis. Neuropsychology 15, 199–210 10.1037/0894-4105.15.2.199
    1. Passineau M. J., Green E. J., Dietrich W. D. (2001). Therapeutic effects of environmental enrichment on cognitive function and tissue integrity following severe traumatic brain injury in rats. Exp. Neurol. 168, 373–384 10.1006/exnr.2000.7623
    1. Patel R., Ciuffreda K. J., Tannen B., Kapoor N. (2011). Elevated coherent motion thresholds in mild traumatic brain injury. Optometry 82, 284–289 10.1016/j.optm.2010.10.012
    1. Percaccio C. R., Engineer N. D., Pruette A. L., Pandya P. K., Moucha R., Rathbun D. L., et al. (2005). Environmental enrichment increases paired-pulse depression in rat auditory cortex. J. Neurophysiol. 94, 3590–3600 10.1152/jn.00433.2005
    1. Percaccio C. R., Pruette A. L., Mistry S. T., Chen Y. H., Kilgard M. P. (2007). Sensory experience determines enrichment-induced plasticity in rat auditory cortex. Brain Res. 1174, 76–91 10.1016/j.brainres.2007.07.062
    1. Pereira L. O., Arteni N. S., Petersen R. C., Da Rocha A. P., Achaval M., Netto C. A. (2007). Effects of daily environmental enrichment on memory deficits and brain injury following neonatal hypoxia-ischemia in the rat. Neurobiol. Learn. Mem. 87, 101–108 10.1016/j.nlm.2006.07.003
    1. Pham T. M., Ickes B., Albeck D., Soderstrom S., Granholm A. C., Mohammed A. H. (1999). Changes in brain nerve growth factor levels and nerve growth factor receptors in rats exposed to environmental enrichment for one year. Neuroscience 94, 279–286 10.1016/S0306-4522(99)00316-4
    1. Pienkowski M., Eggermont J. J. (2009). Long-term, partially-reversible reorganization of frequency tuning in mature cat primary auditory cortex can be induced by passive exposure to moderate-level sounds. Hear. Res. 257, 24–40 10.1016/j.heares.2009.07.011
    1. Pierce J. E., Smith D. H., Trojanowski J. Q., McIntosh T. K. (1998). Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neuroscience 87, 359–369 10.1016/S0306-4522(98)00142-0
    1. Pitkanen A., McIntosh T. K. (2006). Animal models of post-traumatic epilepsy. J. Neurotrauma 23, 241–261 10.1089/neu.2006.23.241
    1. Polley D. B., Kvasnak E., Frostig R. D. (2004). Naturalistic experience transforms sensory maps in the adult cortex of caged animals. Nature 429, 67–71 10.1038/nature02469
    1. Por S. B., Bennett E. L., Bondy S. C. (1982). Environmental enrichment and neurotransmitter receptors. Behav. Neural Biol. 34, 132–140 10.1016/S0163-1047(82)91514-X
    1. Powell J., Heslin J., Greenwood R. (2002). Community based rehabilitation after severe traumatic brain injury: a randomised controlled trial. J. Neurol. Neurosurg. Psychiatry 72, 193–202 10.1136/jnnp.72.2.193
    1. Rampon C., Jiang C. H., Dong H., Tang Y. P., Lockhart D. J., Schultz P. G., et al. (2000). Effects of environmental enrichment on gene expression in the brain. Proc. Natl. Acad. Sci. U.S.A. 97, 12880–12884 10.1073/pnas.97.23.12880
    1. Rasmuson S., Olsson T., Henriksson B. G., Kelly P. A., Holmes M. C., Seckl J. R., et al. (1998). Environmental enrichment selectively increases 5-HT1A receptor mRNA expression and binding in the rat hippocampus. Brain Res. Mol. Brain Res. 53, 285–290
    1. Recanzone G. H., Schreiner C. E., Merzenich M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103
    1. Reibel S., Larmet Y., Le B. T., Carnahan J., Marescaux C., Depaulis A. (2000). Brain-derived neurotrophic factor delays hippocampal kindling in the rat. Neuroscience 100, 777–788 10.1016/S0306-4522(00)00351-1
    1. Rema V., Armstrong-James M., Jenkinson N., Ebner F. F. (2006). Short exposure to an enriched environment accelerates plasticity in the barrel cortex of adult rats. Neuroscience 140, 659–672 10.1016/j.neuroscience.2006.02.043
    1. Risdall J. E., Menon D. K. (2011). Traumatic brain injury. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 366, 241–250 10.1098/rstb.2010.0230
    1. Risedal A., Mattsson B., Dahlqvist P., Nordborg C., Olsson T., Johansson B. B. (2002). Environmental influences on functional outcome after a cortical infarct in the rat. Brain Res. Bull. 58, 315–321 10.1016/S0361-9230(02)00796-7
    1. Rojas J. J., Deniz B. F., Miguel P. M., Diaz R., Hermel Edo E., Achaval M., et al. (2013). Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia-ischemia in the rat. Exp. Neurol. 241, 25–33 10.1016/j.expneurol.2012.11.026
    1. Rose F. D., Al-Khamees K., Davey M. J., Attree E. A. (1993). Environmental enrichment following brain damage: an aid to recovery or compensation? Behav. Brain Res. 56, 93–100
    1. Rose F. D., Davey M. J., Love S., Dell P. A. (1987). Environmental enrichment and recovery from contralateral sensory neglect in rats with large unilateral neocortical lesions. Behav. Brain Res. 24, 195–202 10.1016/0166-4328(87)90057-X
    1. Rose F. D., Dell P. A., Love S., Davey M. J. (1988). Environmental enrichment and recovery from a complex Go/No-Go reversal deficit in rats following large unilateral neocortical lesions. Behav. Brain Res. 31, 37–45 10.1016/0166-4328(88)90156-8
    1. Rosenzweig M. R., Bennett E. L., Hebert M., Morimoto H. (1978). Social grouping cannot account for cerebral effects of enriched environments. Brain Res. 153, 563–576
    1. Rossi C., Angelucci A., Costantin L., Braschi C., Mazzantini M., Babbini F., et al. (2006). Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur. J. Neurosci. 24, 1850–1856 10.1111/j.1460-9568.2006.05059.x
    1. Rowntree S., Kolb B. (1997). Blockade of basic fibroblast growth factor retards recovery from motor cortex injury in rats. Eur. J. Neurosci. 9, 2432–2441 10.1111/j.1460-9568.1997.tb01660.x
    1. Rubinov M., McIntosh A. R., Valenzuela M. J., Breakspear M. (2009). Simulation of neuronal death and network recovery in a computational model of distributed cortical activity. Am. J. Geriatr. Psychiatry 17, 210–217 10.1097/JGP.0b013e318187137a
    1. Rutten A., Van Albada M., Silveira D. C., Cha B. H., Liu X., Hu Y. N., et al. (2002). Memory impairment following status epilepticus in immature rats: time-course and environmental effects. Eur. J. Neurosci. 16, 501–513 10.1046/j.1460-9568.2002.02103.x
    1. Sale A., Maya Vetencourt J. F., Medini P., Cenni M. C., Baroncelli L., De Pasquale R., et al. (2007). Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat. Neurosci. 10, 679–681 10.1038/nn1899
    1. Scali M., Baroncelli L., Cenni M. C., Sale A., Maffei L. (2012). A rich environmental experience reactivates visual cortex plasticity in aged rats. Exp. Gerontol. 47, 337–341 10.1016/j.exger.2012.01.007
    1. Scarmeas N., Stern Y. (2003). Cognitive reserve and lifestyle. J. Clin. Exp. Neuropsychol. 25, 625–633 10.1076/jcen.25.5.625.14576
    1. Schrijver N. C., Bahr N. I., Weiss I. C., Wurbel H. (2002). Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacol. Biochem. Behav. 73, 209–224 10.1016/S0091-3057(02)00790-6
    1. Seeman T. E., Lusignolo T. M., Albert M., Berkman L. (2001). Social relationships, social support, and patterns of cognitive aging in healthy, high-functioning older adults: MacArthur studies of successful aging. Health Psychol. 20, 243–255 10.1037/0278-6133.20.4.243
    1. Segovia G., Yague A. G., Garcia-Verdugo J. M., Mora F. (2006). Environmental enrichment promotes neurogenesis and changes the extracellular concentrations of glutamate and GABA in the hippocampus of aged rats. Brain Res. Bull. 70, 8–14 10.1016/j.brainresbull.2005.11.005
    1. Sharp P. E., McNaughton B. L., Barnes C. A. (1985). Enhancement of hippocampal field potentials in rats exposed to a novel, complex environment. Brain Res. 339, 361–365
    1. Shiel A., Burn J. P., Henry D., Clark J., Wilson B. A., Burnett M. E., et al. (2001). The effects of increased rehabilitation therapy after brain injury: results of a prospective controlled trial. Clin. Rehabil. 15, 501–514 10.1191/026921501680425225
    1. Shultz S. R., Cardamone L., Liu Y. R., Hogan R. E., Maccotta L., Wright D. K., et al. (2013). Can structural or functional changes following traumatic brain injury in the rat predict epileptic outcome? Epilepsia 54, 1240–1250 10.1111/epi.12223
    1. Simpson J., Kelly J. P. (2011). The impact of environmental enrichment in laboratory rats–behavioural and neurochemical aspects. Behav. Brain Res. 222, 246–264 10.1016/j.bbr.2011.04.002
    1. Slade A., Tennant A., Chamberlain M. A. (2002). A randomised controlled trial to determine the effect of intensity of therapy upon length of stay in a neurological rehabilitation setting. J. Rehabil. Med. 34, 260–266 10.1080/165019702760390347
    1. Smith D. H., Okiyama K., Thomas M. J., Claussen B., McIntosh T. K. (1991). Evaluation of memory dysfunction following experimental brain injury using the Morris water maze. J. Neurotrauma 8, 259–269 10.1089/neu.1991.8.259
    1. Smith J. M., Lunga P., Story D., Harris N., Le Belle J., James M. F., et al. (2007). Inosine promotes recovery of skilled motor function in a model of focal brain injury. Brain 130, 915–925 10.1093/brain/awl393
    1. Sohlberg M. M., McLaughlin K. A., Pavese A., Heidrich A., Posner M. I. (2000). Evaluation of attention process training and brain injury education in persons with acquired brain injury. J. Clin. Exp. Neuropsychol. 22, 656–676 10.1076/1380-3395(200010)22:5;1-9;FT656
    1. Sozda C. N., Hoffman A. N., Olsen A. S., Cheng J. P., Zafonte R. D., Kline A. E. (2010). Empirical comparison of typical and atypical environmental enrichment paradigms on functional and histological outcome after experimental traumatic brain injury. J. Neurotrauma 27, 1047–1057 10.1089/neu.2010.1313
    1. Spires T. L., Grote H. E., Varshney N. K., Cordery P. M., Van Dellen A., Blakemore C., et al. (2004). Environmental enrichment rescues protein deficits in a mouse model of Huntington's disease, indicating a possible disease mechanism. J. Neurosci. 24, 2270–2276 10.1523/JNEUROSCI.1658-03.2004
    1. Spivack G., Spettell C. M., Ellis D. W., Ross S. E. (1992). Effects of intensity of treatment and length of stay on rehabilitation outcomes. Brain Inj. 6, 419–434 10.3109/02699059209008138
    1. Strich S. J. (1956). Diffuse degeneration of the cerebral white matter in severe dementia following head injury. J. Neurol. Neurosurg. Psychiatry 19, 163–185 10.1136/jnnp.19.3.163
    1. Sur M., Leamey C. A. (2001). Development and plasticity of cortical areas and networks. Nat. Rev. Neurosci. 2, 251–262 10.1038/35067562
    1. Tang Y. P., Wang H., Feng R., Kyin M., Tsien J. Z. (2001). Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology 41, 779–790 10.1016/S0028-3908(01)00122-8
    1. Taub E., Uswatte G., Elbert T. (2002). New treatments in neurorehabilitation founded on basic research. Nat. Rev. Neurosci. 3, 228–236 10.1038/nrn754
    1. Till C., Colella B., Verwegen J., Green R. E. (2008). Postrecovery cognitive decline in adults with traumatic brain injury. Arch. Phys. Med. Rehabil. 89, S25–S34 10.1016/j.apmr.2008.07.004
    1. Toglia J., Johnston M. V., Goverover Y., Dain B. (2010). A multicontext approach to promoting transfer of strategy use and self regulation after brain injury: an exploratory study. Brain Inj. 24, 664–677 10.3109/02699051003610474
    1. Toglia J. P. (1991). Generalization of treatment: a multicontext approach to cognitive perceptual impairment in adults with brain injury. Am. J. Occup. Ther. 45, 505–516 10.5014/ajot.45.6.505
    1. Tognini P., Manno I., Bonaccorsi J., Cenni M. C., Sale A., Maffei L. (2012). Environmental enrichment promotes plasticity and visual acuity recovery in adult monocular amblyopic rats. PLoS ONE 7:e34815 10.1371/journal.pone.0034815
    1. Torasdotter M., Metsis M., Henriksson B. G., Winblad B., Mohammed A. H. (1998). Environmental enrichment results in higher levels of nerve growth factor mRNA in the rat visual cortex and hippocampus. Behav. Brain Res. 93, 83–90 10.1016/S0166-4328(97)00142-3
    1. Turner A. M., Greenough W. T. (1985). Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res. 329, 195–203
    1. Turrigiano G. G. (1999). Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 10.1016/S0166-2236(98)01341-1
    1. Turrigiano G. G. (2008). The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435 10.1016/j.cell.2008.10.008
    1. Uylings H. B., Kuypers K., Diamond M. C., Veltman W. A. (1978). Effects of differential environments on plasticity of dendrites of cortical pyramidal neurons in adult rats. Exp. Neurol. 62, 658–677 10.1016/0014-4886(78)90276-5
    1. Valero J., Espana J., Parra-Damas A., Martin E., Rodriguez-Alvarez J., Saura C. A. (2011). Short-term environmental enrichment rescues adult neurogenesis and memory deficits in APP(Sw,Ind) transgenic mice. PLoS ONE 6:e16832 10.1371/journal.pone.0016832
    1. Van Dellen A., Blakemore C., Deacon R., York D., Hannan A. J. (2000). Delaying the onset of Huntington's in mice. Nature 404, 721–722 10.1038/35008142
    1. Van Praag H., Christie B. R., Sejnowski T. J., Gage F. H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. U.S.A. 96, 13427–13431 10.1073/pnas.96.23.13427
    1. Van Praag H., Kempermann G., Gage F. H. (2000). Neural consequences of environmental enrichment. Nat. Rev. Neurosci. 1, 191–198 10.1038/35044558
    1. Varty G. B., Paulus M. P., Braff D. L., Geyer M. A. (2000). Environmental enrichment and isolation rearing in the rat: effects on locomotor behavior and startle response plasticity. Biol. Psychiatry 47, 864–873 10.1016/S0006-3223(99)00269-3
    1. Vedovelli K., Silveira E., Velho E., Stertz L., Kapczinski F., Schroder N., et al. (2011). Effects of increased opportunity for physical exercise and learning experiences on recognition memory and brain-derived neurotrophic factor levels in brain and serum of rats. Neuroscience 199, 284–291 10.1016/j.neuroscience.2011.08.012
    1. Volkmar F. R., Greenough W. T. (1972). Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science 176, 1445–1447 10.1126/science.176.4042.1445
    1. Voss M. W., Nagamatsu L. S., Liu-Ambrose T., Kramer A. F. (2011). Exercise, brain, and cognition across the life span. J. Appl. Physiol. (1985) 111, 1505–1513 10.1152/japplphysiol.00210.2011
    1. Wagner A. K., Kline A. E., Sokoloski J., Zafonte R. D., Capulong E., Dixon C. E. (2002). Intervention with environmental enrichment after experimental brain trauma enhances cognitive recovery in male but not female rats. Neurosci. Lett. 334, 165–168 10.1016/S0304-3940(02)01103-5
    1. Walsh R. N., Budtz-Olsen O. E., Penny J. E., Cummins R. A. (1969). The effects of environmental complexity on the histology of the rat hippocampus. J. Comp. Neurol. 137, 361–366 10.1002/cne.901370309
    1. Wang Y., Bontempi B., Hong S. M., Mehta K., Weinstein P. R., Abrams G. M., et al. (2008). A comprehensive analysis of gait impairment after experimental stroke and the therapeutic effect of environmental enrichment in rats. J. Cereb. Blood Flow Metab. 28, 1936–1950 10.1038/jcbfm.2008.82
    1. Warraich Z., Kleim J. A. (2010). Neural plasticity: the biological substrate for neurorehabilitation. PM R 2, S208–S219 10.1016/j.pmrj.2010.10.016
    1. Wen P. H., Hof P. R., Chen X., Gluck K., Austin G., Younkin S. G., et al. (2004). The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp. Neurol. 188, 224–237 10.1016/j.expneurol.2004.04.002
    1. Whishaw I. Q., Pellis S. M., Gorny B. P., Pellis V. C. (1991). The impairments in reaching and the movements of compensation in rats with motor cortex lesions: an endpoint, videorecording, and movement notation analysis. Behav. Brain Res. 42, 77–91 10.1016/S0166-4328(05)80042-7
    1. Whishaw I. Q., Zaborowski J. A., Kolb B. (1984). Postsurgical enrichment aids adult hemidecorticate rats on a spatial navigation task. Behav. Neural Biol. 42, 183–190 10.1016/S0163-1047(84)91046-X
    1. Will B., Galani R., Kelche C., Rosenzweig M. R. (2004). Recovery from brain injury in animals: relative efficacy of environmental enrichment, physical exercise or formal training (1990-2002). Prog. Neurobiol. 72, 167–182 10.1016/j.pneurobio.2004.03.001
    1. Will B. E., Rosenzweig M. R., Bennett E. L., Hebert M., Morimoto H. (1977). Relatively brief environmental enrichment aids recovery of learning capacity and alters brain measures after postweaning brain lesions in rats. J. Comp. Physiol. Psychol. 91, 33–50 10.1037/h0077306
    1. Willer B., Button J., Rempel R. (1999). Residential and home-based postacute rehabilitation of individuals with traumatic brain injury: a case control study. Arch. Phys. Med. Rehabil. 80, 399–406 10.1016/S0003-9993(99)90276-9
    1. Wilson R., Barnes L., Bennett D. (2003). Assessment of lifetime participation in cognitively stimulating activities. J. Clin. Exp. Neuropsychol. 25, 634–642 10.1076/jcen.25.5.634.14572
    1. Wood N. I., Carta V., Milde S., Skillings E. A., McAllister C. J., Ang Y. L., et al. (2010). Responses to environmental enrichment differ with sex and genotype in a transgenic mouse model of Huntington's disease. PLoS ONE 5:e9077 10.1371/journal.pone.0009077
    1. Workman J. L., Fonken L. K., Gusfa J., Kassouf K. M., Nelson R. J. (2011). Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacol. Biochem. Behav. 100, 25–32 10.1016/j.pbb.2011.07.008
    1. Xerri C., Bourgeon S., Coq J. O. (2005). Perceptual context-dependent remodeling of the forepaw map in the SI cortex of rats trained on tactile discrimination. Behav. Brain Res. 162, 207–221 10.1016/j.bbr.2005.03.003
    1. Xerri C., Coq J. O., Merzenich M. M., Jenkins W. M. (1996). Experience-induced plasticity of cutaneous maps in the primary somatosensory cortex of adult monkeys and rats. J. Physiol. Paris 90, 277–287 10.1016/S0928-4257(97)81438-6
    1. Xu T., Yu X., Perlik A. J., Tobin W. F., Zweig J. A., Tennant K., et al. (2009a). Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 10.1038/nature08389
    1. Xu X., Ye L., Ruan Q. (2009b). Environmental enrichment induces synaptic structural modification after transient focal cerebral ischemia in rats. Exp. Biol. Med. (Maywood) 234, 296–305 10.3181/0804-RM-128
    1. Yan E. B., Johnstone V. P., Alwis D. S., Morganti-Kossmann M. C., Rajan R. (2013). Characterising effects of impact velocity on brain and behaviour in a model of diffuse traumatic axonal injury. Neuroscience 248C, 17–29 10.1016/j.neuroscience.2013.05.045
    1. Young D., Lawlor P. A., Leone P., Dragunow M., During M. J. (1999). Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat. Med. 5, 448–453 10.1038/7449
    1. Zebunke M., Puppe B., Langbein J. (2013). Effects of cognitive enrichment on behavioural and physiological reactions of pigs. Physiol. Behav. 118, 70–79 10.1016/j.physbeh.2013.05.005
    1. Zhou X., Panizzutti R., De Villers-Sidani E., Madeira C., Merzenich M. M. (2011). Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. J. Neurosci. 31, 5625–5634 10.1523/JNEUROSCI.6470-10.2011
    1. Zhu X. L., Poon W. S., Chan C. C., Chan S. S. (2007). Does intensive rehabilitation improve the functional outcome of patients with traumatic brain injury (TBI)? A randomized controlled trial. Brain Inj. 21, 681–690 10.1080/02699050701468941
    1. Zhu X. L., Poon W. S., Chan C. H., Chan S. H. (2001). Does intensive rehabilitation improve the functional outcome of patients with traumatic brain injury? Interim result of a randomized controlled trial. Br. J. Neurosurg. 15, 464–473 10.1080/02688690120097688
    1. Zhu X. O., McCabe B. J., Aggleton J. P., Brown M. W. (1997). Differential activation of the rat hippocampus and perirhinal cortex by novel visual stimuli and a novel environment. Neurosci. Lett. 229, 141–143 10.1016/S0304-3940(97)00437-0
    1. Zimmermann A., Stauffacher M., Langhans W., Wurbel H. (2001). Enrichment-dependent differences in novelty exploration in rats can be explained by habituation. Behav. Brain Res. 121, 11–20 10.1016/S0166-4328(00)00377-6

Source: PubMed

3
Suscribir