Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications

Chiara Corrado, Stefania Raimondo, Antonio Chiesi, Francesco Ciccia, Giacomo De Leo, Riccardo Alessandro, Chiara Corrado, Stefania Raimondo, Antonio Chiesi, Francesco Ciccia, Giacomo De Leo, Riccardo Alessandro

Abstract

Cell to cell communication is essential for the coordination and proper organization of different cell types in multicellular systems. Cells exchange information through a multitude of mechanisms such as secreted growth factors and chemokines, small molecules (peptides, ions, bioactive lipids and nucleotides), cell-cell contact and the secretion of extracellular matrix components. Over the last few years, however, a considerable amount of experimental evidence has demonstrated the occurrence of a sophisticated method of cell communication based on the release of specialized membranous nano-sized vesicles termed exosomes. Exosome biogenesis involves the endosomal compartment, the multivesicular bodies (MVB), which contain internal vesicles packed with an extraordinary set of molecules including enzymes, cytokines, nucleic acids and different bioactive compounds. In response to stimuli, MVB fuse with the plasma membrane and vesicles are released in the extracellular space where they can interact with neighboring cells and directly induce a signaling pathway or affect the cellular phenotype through the transfer of new receptors or even genetic material. This review will focus on exosomes as intercellular signaling organelles involved in a number of physiological as well as pathological processes and their potential use in clinical diagnostics and therapeutics.

Figures

Figure 1
Figure 1
Schematic representation of exosome-mediated crosstalk. Tumor and normal stroma cells communicate through exosomes to establish a favourable tumor microenvironment and promote cancer growth, invasion and metastasis. Exosomes contain soluble factors, mRNA and miRNAs that may affect the phenotypes of different cytotypes such as fibroblasts, vascular endothelial cells and immune cells.

References

    1. Alessandro R., Kohn E.C. Signal transduction targets in invasion. Clin. Exp. Metastasis. 2002;19:265–273.
    1. Simons M., Raposo G. Exosomes—Vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 2009;21:575–581.
    1. Mathivanan S., Ji H., Simpson R.J. Exosomes: Extracellular organelles important in intercellular communication. J. Proteomics. 2010;73:1907–1920.
    1. Harding C., Heuser J., Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 1983;97:329–339.
    1. Pan B.T., Teng K., Wu C., Adam M., Johnstone R.M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 1985;101:942–948.
    1. Trams E.G., Lauter C.J., Salem N., Jr, Ursula H. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta. 1981;645:63–70.
    1. Johnstone R.M., Adam M., Hammond J.R., Orr L., Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes) J. Biol. Chem. 1987;262:9412–9420.
    1. Raposo G., Nijman H.W., Stoorvogel W., Liejendekker R., Harding C.V., Melief C.J., Geuze H.J. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 1996;183:1161–1172.
    1. Zech D., Rana S., Buchler M.W., Zoller M. Tumor-exosomes and leukocyte activation: An ambivalent crosstalk. Cell Commun. Signal. 2012;10:37.
    1. Thery C., Regnault A., Garin J., Wolfers J., Zitvogel L., Ricciardi-Castagnoli P., Raposo G., Amigorena S. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 1999;147:599–610.
    1. Carroll-Portillo A., Surviladze Z., Cambi A., Lidke D.S., Wilson B.S. Mast cell synapses and exosomes: Membrane contacts for information exchange. Front. Immunol. 2012;3:46.
    1. Lai R.C., Arslan F., Lee M.M., Sze N.S., Choo A., Chen T.S., Salto-Tellez M., Timmers L., Lee C.N., El Oakley R.M., et al. Exosome secreted by msc reduces myocardial ischemia/reperfusion injury. Stem. Cell Res. 2010;4:214–222.
    1. Mallegol J., van Niel G., Lebreton C., Lepelletier Y., Candalh C., Dugave C., Heath J.K., Raposo G., Cerf-Bensussan N., Heyman M. T84-intestinal epithelial exosomes bear mhc class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology. 2007;132:1866–1876.
    1. Kapsogeorgou E.K., Abu-Helu R.F., Moutsopoulos H.M., Manoussakis M.N. Salivary gland epithelial cell exosomes: A source of autoantigenic ribonucleoproteins. Arthritis Rheum. 2005;52:1517–1521.
    1. Wang G., Dinkins M., He Q., Zhu G., Poirier C., Campbell A., Mayer-Proschel M., Bieberich E. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (par-4): Potential mechanism of apoptosis induction in Alzheimer disease (ad) J. Biol. Chem. 2012;287:21384–21395.
    1. Hergenreider E., Heydt S., Treguer K., Boettger T., Horrevoets A.J., Zeiher A.M., Scheffer M.P., Frangakis A.S., Yin X., Mayr M., et al. Atheroprotective communication between endothelial cells and smooth muscle cells through mirnas. Nat. Cell Biol. 2012;14:249–256.
    1. Ristorcelli E., Beraud E., Verrando P., Villard C., Lafitte D., Sbarra V., Lombardo D., Verine A. Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB J. 2008;22:3358–3369.
    1. Clayton A., Mitchell J.P., Court J., Linnane S., Mason M.D., Tabi Z. Human tumor-derived exosomes down-modulate nkg2d expression. J. Immunol. 2008;180:7249–7258.
    1. Peinado H., Aleckovic M., Lavotshkin S., Matei I., Costa-Silva B., Moreno-Bueno G., Hergueta-Redondo M., Williams C., Garcia-Santos G., Ghajar C., et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through met. Nat. Med. 2012;18:883–891.
    1. Al-Nedawi K., Meehan B., Rak J. Microvesicles: Messengers and mediators of tumor progression. Cell Cycle. 2009;8:2014–2018.
    1. Taverna S., Flugy A., Saieva L., Kohn E.C., Santoro A., Meraviglia S., de Leo G., Alessandro R. Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int. J. Cancer. 2012;130:2033–2043.
    1. Dear J.W., Street J.M., Bailey M.A. Urinary exosomes: A reservoir for biomarker discovery and potential mediators of intra-renal signaling. Proteomics. 2012 doi: 10.1002/pmic.201200285.
    1. Gallo A., Tandon M., Alevizos I., Illei G.G. The majority of micrornas detectable in serum and saliva is concentrated in exosomes. PLoS One. 2012;7:e30679.
    1. Torregrosa Paredes P., Esser J., Admyre C., Nord M., Rahman Q.K., Lukic A., Radmark O., Gronneberg R., Grunewald J., Eklund A., et al. Bronchoalveolar lavage fluid exosomes contribute to cytokine and leukotriene production in allergic asthma. Allergy. 2012;67:911–919.
    1. Wahlgren J., de Karlson L.T., Brisslert M., vaziri Sani F., Telemo E., Sunnerhagen P., Valadi H. Plasma exosomes can deliver exogenous short interfering rna to monocytes and lymphocytes. Nucleic Acids Res. 2012;40:e130.
    1. Skriner K., Adolph K., Jungblut P., Burmester G. Association of citrullinated proteins with synovial exosomes. Arthritis Rheum. 2006;54:3809–3814.
    1. Mathivanan S., Simpson R.J. Exocarta: A compendium of exosomal proteins and RNA. Proteomics. 2009;9:4997–5000.
    1. Savina A., Fader C.M., Damiani M.T., Colombo M.I. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic. 2005;6:131–143.
    1. Hurley J.H., Odorizzi G. Get on the exosome bus with alix. Nat. Cell Biol. 2012;14:654–655.
    1. Petersen S.H., Odintsova E., Haigh T.A., Rickinson A.B., Taylor G.S., Berditchevski F. The role of tetraspanin cd63 in antigen presentation via mhc class II. Eur. J. Immunol. 2011;41:2556–2561.
    1. Lugini L., Cecchetti S., Huber V., Luciani F., Macchia G., Spadaro F., Paris L., Abalsamo L., Colone M., Molinari A., et al. Immune surveillance properties of human nk cell-derived exosomes. J. Immunol. 2012;189:2833–2842.
    1. Mathivanan S., Lim J.W., Tauro B.J., Ji H., Moritz R.L., Simpson R.J. Proteomics analysis of a33 immunoaffinity-purified exosomes released from the human colon tumor cell line lim1215 reveals a tissue-specific protein signature. Mol. Cell Proteomics. 2010;9:197–208.
    1. Faure J., Lachenal G., Court M., Hirrlinger J., Chatellard-Causse C., Blot B., Grange J., Schoehn G., Goldberg Y., Boyer V., et al. Exosomes are released by cultured cortical neurones. Mol. Cell Neurosci. 2006;31:642–648.
    1. Yang J.M., Gould S.J. The cis-acting signals that target proteins to exosomes and microvesicles. Biochem. Soc. Trans. 2013;41:277–82.
    1. Shen B., Wu N., Yang J.M., Gould S.J. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J. Biol. Chem. 2011;286:14383–95.
    1. Fehon R.G., McClatchey A.I., Bretscher A. Organizing the cell cortex: The role of ERM proteins. Nat. Rev. Mol. Cell Biol. 2010;11:276–87.
    1. Rana S., Yue S., Stadel D., Zoller M. Toward tailored exosomes: The exosomal tetraspaninwebcontributes to target cell selection. Int. J. Biochem. Cell Biol. 2012;44:1574–1584.
    1. Nabhan J.F., Hu R., Oh R.S., Cohen S.N., Lu Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl. Acad. Sci. USA. 2012;109:4146–4151.
    1. Baietti M.F., Zhang Z., Mortier E., Melchior A., Degeest G., Geeraerts A., Ivarsson Y., Depoortere F., Coomans C., Vermeiren E., et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 2012;14:677–85.
    1. Geminard C., de Gassart A., Blanc L., Vidal M. Degradation of ap2 duringreticulocyte maturationenhances binding of hsc70 and alix to a common site on tfr for sorting into exosomes. Traffic. 2004;5:181–193.
    1. Irion U., St Johnston D. Bicoid RNA localization requires specific binding of an endosomal sorting complex. Nature. 2007;445:554–558.
    1. Turchinovich A., Weiz L., Langheinz A., Burwinkel B. Characterization of extracellular circulating microrna. Nucleic Acids Res. 2011;398:7223–7233.
    1. Savina A., Furlan M., Vidal M., Colombo M.I. Exosome release is regulated by a calcium-dependent mechanism in k562 cells. J. Biol. Chem. 2003;278:20083–20090.
    1. Yu X., Riley T., Levine A.J. The regulation of the endosomal compartment by p53 the tumor suppressor gene. FEBS J. 2009;276:2201–2212.
    1. Feng D., Zhao W.L., Ye Y.Y., Bai X.C., Liu R.Q., Chang L.F., Zhou Q., Sui S.F. Cellular internalization of exosomes occurs through phagocytosis. Traffic. 2010;11:675–687.
    1. Parolini I., Federici C., Raggi C., Lugini L., Palleschi S., de Milito A., Coscia C., Iessi E., Logozzi M., Molinari A., et al. Microenvironmental ph is a key factor for exosome traffic in tumor cells. J. Biol. Chem. 2009;284:34211–34222.
    1. Montecalvo A., Larregina A.T., Shufesky W.J., Stolz D.B., Sullivan M.L., Karlsson J.M., Baty C.J., Gibson G.A., Erdos G., Wang Z., et al. Mechanism of transfer of functional micrornas between mouse dendritic cells via exosomes. Blood. 2012;119:756–766.
    1. Segura E., Guerin C., Hogg N., Amigorena S., Thery C. Cd8+ dendritic cells use lfa-1 to capture mhc-peptide complexes from exosomes in vivo. J. Immunol. 2007;179:1489–1496.
    1. Calzolari A., Raggi C., Deaglio S., Sposi N.M., Stafsnes M., Fecchi K., Parolini I., Malavasi F., Peschle C., Sargiacomo M., et al. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J. Cell Sci. 2006;119:4486–98.
    1. Clayton A., Turkes A., Dewitt S., Steadman R., Mason M.D., Hallett M.B. Adhesion and signaling by B cell-derived exosomes: The role of integrins. FASEB J. 2004;18:977–979.
    1. Muntasell A., Berger A.C., Roche P.A. T cell-induced secretion of mhc class II-peptide complexes on b cell exosomes. EMBO J. 2007;26:4263–4272.
    1. Nolte-’t Hoen E.N., Buschow S.I., Anderton S.M., Stoorvogel W., Wauben M.H. Activated T cells recruit exosomes secreted by dendritic cells via lfa-1. Blood. 2009;113:1977–1981.
    1. Karlsson M., Lundin S., Dahlgren U., Kahu H., Pettersson I., Telemo E. “Tolerosomes” are produced by intestinal epithelial cells. Eur. J. Immunol. 2001:2892–2900.
    1. Almqvist N.L.A., Hultkrantz S., Rask C., Telemo E. Serum-derived exosomes from antigen-fed mice prevent allergic sensitization in a model of allergic asthma. Immunology. 2008;125:21–27.
    1. Frängsmyr L., Baranov V., Nagaeva O., Stendahl U., Kjellberg L., Mincheva-Nilsson L. Cytoplasmic microvesicular form of fas ligand in human early placenta: Switching the tissue immune privilege hypothesis from cellular to vesicular level. Mol. Human Reprod. 2005;11:35–41.
    1. Abrahams V.M., Straszewski-Chavez S.L., Guller S., Mor G. First trimester trophoblast cells secrete fas ligand which induces immune cell apoptosis. Mol. Human Reprod. 2004;10:55–63.
    1. Hedlund M., Stenqvist A.C., Nagaeva O., Kjellberg L., Wulff M., Baranov V., Mincheva-Nilsson L. Human placenta expresses and secretes nkg2d ligands via exosomes that down-modulate the cognate receptor expression: Evidence for immunosuppressive function. J. Immul. 2009;183:340–351.
    1. Reinhardt T.A., Lippolis J.D., Nonnecke B.J., Sacco R.E. Bovine milk exosome proteome. J. Proteomics. 2012;75:1486–1492.
    1. Hata T., Murakami K., Nakatani H., Yamamoto Y., Matsuda T., Aoki N. Isolation of bovine milk-derived microvesicles carrying mrnas and micrornas. Biochem. Biophys. Res. Commun. 2010;396:528–533.
    1. Zhou Q., Li M., Wang X., Li Q., Wang T., Zhu Q., Zhou X., Gao X., Li X. Immune-related micrornas are abundant in breast milk exosomes. Int. J. Biol. Sci. 2012;8:118–123.
    1. Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-mediated transfer of mrnas and micrornas is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–659.
    1. Luga V., Zhang L., Viloria-Petit A.M., Ogunjimi A.A., Inanlou M.R., Chiu E., Buchanan M., Hosein A.N., Basik M., Wrana J.L. Exosomes mediate stromal mobilization of autocrine wnt-pcp signaling in breast cancer cell migration. Cell. 2012;51:1542–1556.
    1. Fabbri M., Paone A., Calore F., Galli R., Gaudio E., Santhanam R., Lovat F., Fadda P., Mao C., Nuovo G.J., et al. Micrornas bind to toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. USA. 2012;109:E2110–E2116.
    1. Corrado C., Flugy A., Taverna S., Raimondo S., Guggino G., Karmali R., de Leo G., Alessandro R. Carboxyamidotriazole-orotate inhibits the growth of imatinib-resistant chronic myeloid leukaemia cells and modulates exosomes-stimulated angiogenesis. PLoS One. 2012;7:e42310.
    1. Mineo M., Garfield S., Taverna S., Flugy A., de Leo G., Alessandro R., Kohn E. Exosomes released by k562 chronic myeloid leukemia cells promote angiogenesis in a src-dependent fashion. Angiogenesis. 2012;15:33–45.
    1. Huan J., Hornick N., Skinner A., Goloviznina N., Roberts C., Kurre P. RNA trafficking by acute myeloid leukemia exosomes. Cancer Res. 2012 doi: 10.1158/0008-5472.CAN-12-2184.
    1. Surgucheva I., Sharov V., Surguchov A. γ-synuclein: Seeding of α-synuclein aggregation and transmission between cells. Biochemistry. 2012;51:4743–4754.
    1. Zhang H., Liu C., Su K., Yu S., Zhang L., Zhang S., Wang J., Cao X., Grizzle W., Kimberly R. A membrane form of TNF-α presented by exosomes delays T cell activation-induced cell death. J. Immunol. 2006;176:7385–7393.
    1. Wan S., Zhou Z., Duan B., Morel L. Direct b cell stimulation by dendritic cells in a mouse model of lupus. Arthritis Rheum. 2008;58:1741–1750.
    1. Saunderson S.C., Schuberth P.C., Dunn A.C., Miller L., Hock B.D., MacKay P.A., Koch N., Jack R.W., McLellan A.D. Induction of exosome release in primary B cells stimulated via cd40 and the il-4 receptor. J. Immunol. 2008;180:8146–8152.
    1. Zitvogel L., Regnault A., Lozier A., Wolfers J., Flament C., Tenza D., Ricciardi-Castagnoli P., Raposo G., Amigorena S. Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes. Nat. Med. 1998;4:594–600.
    1. Yin W., Ouyang S., Li Y., Xiao B., Yang H. Immature dendritic cell-derived exosomes: A promise subcellular vaccine for autoimmunity. Inflammation. 2012 doi: 10.1007/s10753-012-9539-1.
    1. Kim S.H., Bianco N., Menon R., Lechman E.R., Shufesky W.J., Morelli A.E., Robbins P.D. Exosomes derived from genetically modified dc expressing fasl are anti-inflammatory and immunosuppressive. Mol. Ther. 2006;13:289–300.
    1. Kim S.H., Bianco N.R., Shufesky W.J., Morelli A.E., Robbins P.D. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express il-4. J. Immunol. 2007;179:2242–2249.0.
    1. Cai Z., Zhang W., Yang F., Yu L., Yu Z., Pan J., Wang L., Cao X., Wang J. Immunosuppressive exosomes from TGF-β1 gene-modified dendritic cells attenuate th17-mediated inflammatory autoimmune disease by inducing regulatory t cells. Cell Res. 2012;22:607–661.
    1. Pêche H., Renaudin K., Beriou G., Merieau E., Amigorena S., Cuturi M.C. Induction of tolerance by exosomes and shortterm immunosuppression in a fully mhc-mismatched rat cardiac allograft model. Am. J. Transplant. 2006;6:1541–1550.
    1. Yang X., Meng S., Jiang H., Zhu C., Wu W. Exosomes derived from immature bone marrow dendritic cells induce tolerogenicity of intestinal transplantation in rats. J. Surg. Res. 2011;171:826–832.
    1. Li X., Li J.J., Yang J.Y., Wang D.S., Zhao W., Song W.J., Li W.M., Wang J.F., Han W., Zhang Z.C., et al. Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model. PLoS One. 2012;7:e44045.
    1. Montecalvo A., Shufesky W.J., Stolz D.B., Sullivan M.G., Wang Z., Divito S.J., Papworth G.D., Watkins S.C., Robbins P.D., Larregina A.T., et al. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J. Immunol. 2008;180:3081–3090.
    1. Caby M.P., Lankar D., Vincendeau-Scherrer C., Raposo G., Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 2005;17:879–887.
    1. Pisitkun T., Shen R.F., Knepper M.A. Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. USA. 2004;101:13368–13373.
    1. Gonzales P.A., Pisitkun T., Hoffert J.D., Tchapyjnikov D., Star R.A., Kleta R., Wang N.S., Knepper M.A. Large-scale proteomics and phosphoproteomics of urinary exosomes. 2009;20:363–379.
    1. Ogawa Y., Kanai-Azuma M., Akimoto Y., Kawakami H., Yanoshita R. Exosome-like vesicles with dipeptidyl peptidase iv in human saliva. Biol. Pharm. Bull. 2008;31:1059–1062.
    1. Admyre C., Johansson S.M., Qazi K.R., Filen J.J., Lahesmaa R., Norman M., Neve E.P.A., Scheynius A., Gabrielsson S. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 2007;179:1969–1978.
    1. Admyre C., Grunewald J., Thyberg J., Gripenbäck S., Tornling G., Eklund A., Scheynius A., Gabrielsson S. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human bal fluid. Eur. Respir. J. 2003;22:578–583.
    1. Gatti J.L., Métayer S., Belghazi M., Dacheux F., Dacheux J.L. Identification, proteomic profiling, and origin of ram epididymal fluid exosome-like vesicles. Biol. Reprod. 2005;72:1452–1465.
    1. Gonzalez-Begne M., Lu B., Han X., Hagen F.K., Hand A.R., Melvin J.E., Yates J.R. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (mudpit) J. Prot. Res. 2009;8:1304–1314.
    1. Tarazona R., Delgado E., Guarnizo M.C., Roncero R.G., Morgado S., Sánchez-Correa B., Gordillo J.J., Dejulián J., Casado J.G. Human prostasomes express cd48 and interfere with nk cell function. Immunobiology. 2011;216:41–46.
    1. Taylor D.D., Akyol S., Gercel-Taylor C. Pregnancy-associated exosomes and their modulation of T cell signaling. J. Immunol. 2006;176:1534–1542.
    1. Lässer C., Alikhani V.S., Ekström K., Eldh M., Paredes P.T., Bossios A., Sjöstrand M., Gabrielsson S., Lötvall J., Valadi H. Human saliva, plasma and breast milk exosomes contain rna: Uptake by macrophages. J. Transl. Med. 2011;9:1–8.
    1. Xiao H., Wonga D.T. Proteomic analysis of microvesicles in human saliva by gel electrophoresis with liquid chromatography-mass spectrometry. Anal. Chim. Acta. 2012;723:61–67.
    1. Kim S.H., Bianco N.R., Shufesky W.J., Morelli A.E., Robbins P.D. Mhc class II+ exosomes in plasma suppress inflammation in an antigen-specific and fas ligand/fas-dependent manner. J. Immunol. 2007;179:2235–2241.
    1. Ostman S., Taube M., Telemo E. Tolerosome-induced oral tolerancies mhc dependent. Immunology. 2005;116:464–476.
    1. Prado N., Marazuel E., Segura E., Fernández-García H., Villalba M., Théry C., Rodríguez R., Batanero E. Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J. Immunol. 2008;181:1519–1525.
    1. Street J., Birkhoff W., Menzies R., Webb D., Bailey M., Dear J. Exosomal transmission of functional aquaporin 2 in kidney cortical collecting duct cells. J. Physiol. 2011;589:6119–6127.
    1. Wang Z., Hill S., Luther J., Hachey D., Schey K. Proteomic analysis of urine exosomes by multidimensional protein identification technology (mudpit) Proteomics. 2012;12:329–338.
    1. Belting M., Wittrup A. Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: Implications in health and disease. J. Cell Biol. 2008;183:1187–1191.
    1. Wang K., Zhang S., Weber J., Baxter D., Galas D.J. Export of micrornas and microrna-protective protein by mammalian cells. Nucleic Acids Res. 2010;38:7248–7259.
    1. Chen X., Liang H., Zhang J., Zen K., Zhang C.Y. Horizontal transfer of micrornas: Molecular mechanisms and clinical applications. Protein Cell. 2012;3:28–37.
    1. Eldh M., Ekström K., Valadi H., Sjöstrand M., Olsson B., Jernås M., Lötvall J. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One. 2010;5:1–8.
    1. Mittelbrunn M., Gutierrez-Vazquez C., Villarroya-Beltri C., Gonzalez S., Sanchez-Cabo F., Gonzalez M.A., Bernad A., Sanchez-Madrid F. Unidirectional transfer of microrna-loaded exosomes from t cells to antigen-presenting cells. Nat. Commun. 2011;2:282–292.
    1. Li Q.J., Chau J., Ebert P.J., Sylvester G., Min H., Liu G., Braich R., Manoharan M., Soutschek J., Skare P., et al. Mir-181a is an intrinsic modulator of t cell sensitivity and selection. Cell. 2007;129:147–161.
    1. Chen C.Z., Li L., Lodish H.F., Bartel D.P. Micrornas modulate hematopoietic lineage differentiation. Science. 2004;303:83–86.
    1. Vigorito E., Perks K.L., Abreu-Goodger C., Bunting S., Xiang Z., Kohlhaas S., Das P.P., Miska E.A., Rodriguez A., Bradley A., et al. Microrna-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 2007;27:847–859.
    1. Kosaka N.I.H., Sekine K., Ochiya T. Microrna as a new immune-regulatory breast milk. Silence. 2010;1:1–8.
    1. Hass R., Otte A. Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Commun. Signal. 2012;10:26–39.
    1. Taylor D.D., Gercel-Taylor C. Exosomes/microvesicles: Mediators of cancer-associated immunosuppressive microenvironments. Semin. Immunopathol. 2011;33:441–454.
    1. Zhu W.X.W., Jiang R., Qian H., Chen M., Hu J., Cao W., Han C., Chen Y. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp. Mol. Pathol. 2006;80:267–274.
    1. Karnoub A.E., Dash A.B., Vo A.P., Sullivan A., Brooks M.W., Bell G.W., Richardson A.L., Polyak K., Tubo R., Weinberg R.A. Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature. 2007;449:557–563.
    1. Shinagawa K., Kitadai Y., Tanaka M., Sumida T., Kodama M., Higashi Y., Tanaka S., Yasui W., Chayama K. Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int. J. Cancer. 2010;127:2323–2333.
    1. Psaila B., Lyden D. The metastatic niche: Adapting the foreign soil. Nat. Rev. Cancer. 2009;9:285–293.
    1. Zhu W., Huang L., Li Y., Zhang X., Gu J., Yan Y., Xu X., Wang M., Qian H., Xu W. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 2012;315:28–37.
    1. Demory Beckler M., Higginbotham J., Franklin J., Ham A.-J., Halvey P., Imasuen I., Whitwell C., Li M., Liebler D., Coffey R.J. Proteomic analysis of exosomes from mutant kras colon cancer cells identifies intercellular transfer of mutant kras. Mol. Cell. Proteomics. 2012;12:343–355.
    1. Qu J., Qu X., Zhao M., Teng Y., Zhang Y., Hou K., Jiang Y., Yang X., Liu Y. Gastric cancer exosomes promote tumor cell proliferation through pi3k/akt and mapk/erk activation. Digest. Liver Dis. 2009;41:875–880.
    1. Umezu T., Ohyashiki K., Kuroda M., Ohyashiki J. Leukemia cell to endothelial cell communication via exosomal mirnas. Oncogene. 2012 doi: 10.1038/onc.2012.295.
    1. Harris A.L. Hypoxia—A key regulatory factor in tumor growth. Nat. Rev. Cancer. 2002;2:38–47.
    1. Kai R., Gang S., Gaoliang O. Role of hypoxia in the hallmarks of human cancer. J. Cell. Biochem. 2009;107:1053–1062.
    1. King H.W., Michael M.Z., Gleadle J.M. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421.
    1. Crosby M.E.K.R., Ivan M., Glazer P.M. Microrna regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 2009;69:1221–1229.
    1. Park J.E., Tan H.S., Datta A., Lai R.C., Zhang H., Meng W., Lim S.K., Sze S.K. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol. Cell. Proteomics. 2010;9:1085–1099.
    1. Camps C., Buffa F.M., Colella S., Moore J., Sotiriou C., Sheldon H., Harris A.L., Gleadle J.M., Ragoussis J. Hsa-mir-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin. Cancer Res. 2008;14:1340–1348.
    1. Safaei R., Larson B., Cheng T., Gibson M., Otani S., Naerdemann W., Howell S. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol. Cancer Ther. 2005;4:1595–1604.
    1. Yan X., Yin J., Yao H., Mao N., Yang Y., Pan L. Increased expression of annexin a3 is a mechanism of platinum resistance in ovarian cancer. Cancer Res. 2010;70:1616–1624.
    1. Yin J., Yan X., Yao X., Zhang Y., Shan Y., Mao N., Yang Y., Pan L. Secretion of annexin a3 from ovarian cancer cells and its association with platinum resistance in ovarian cancer patients. J. Cell Mol. Med. 2012;16:337–348.
    1. Battke C., Ruiss R., Welsch U., Wimberger P., Lang S., Jochum S., Zeidler R. Tumor exosomes inhibit binding of tumor-reactive antibodies to tumor cells and reduce adcc. Cancer Immunol. Immunother. 2011;60:639–648.
    1. Taylor A.R., Robinson M.B., Gifondorwa D.J., Tytell M., Milligan C.E. Regulation of heat shock protein 70 release in astrocytes: Role of signaling kinases. Dev. Neurobiol. 2007;67:1815–1829.
    1. Potolicchio I., Carven G.J., Xu X., Stipp C., Riese R.J., Stern L.J., Santambrogio L. Proteomic analysis of microglia-derived exosomes: Metabolic role of the aminopeptidase cd13 in neuropeptide catabolism. J. Immunol. 2005;175:2237–2243.
    1. Lachenal G., Pernet-Gallay K., Chivet M., Hemming F.J., Belly A., Bodon G., Blot B., Haase G., Goldberg Y., Sadoul R. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci. 2011;46:409–418.
    1. Weissmann C., Enari M., Klöhn P.C., Rossi D., Flechsig E. Transmission of prions. Proc. Natl. Acad. Sci. USA. 2002;99:16378–16383.
    1. Fevrier B., Vilette D., Archer F., Loew D., Faigle W., Vidal M., Laude H., Raposo G. Cells release prions in association with exosomes. Proc. Natl. Acad. Sci. USA. 2004;101:9683–9688.
    1. Vella L.J., Sharples R.A., Lawson V.A., Masters C.L., Cappai R., Hill A.F. Packaging of prions into exosomes is associated with a novel pathway of prp processing. J. Pathol. 2007;211:582–590.
    1. Aguzzi A., Rajendran L. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron. 2009;64:783–790.
    1. Alvarez-Erviti L.S.Y., Schapira A.H., Gardiner C., Sargent I.L., Wood M.J., Cooper J.M. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol. Dis. 2011;42:360–367.
    1. Selkoe D.J. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J. Alzheimers Dis. 2001;3:75–80.
    1. Rajendran L., Honsho M., Zahn T.R., Keller P., Geiger K.D., Verkade P., Simons K. Alzheimer’s disease b-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. USA. 2006;103:11172–11177.
    1. Saman S., Kim W., Raya M., Visnick Y., Miro S., Saman S., Jackson B., McKee A., Alvarez V., Lee N., et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early alzheimer disease. J. Biol. Chem. 2012;287:3842–3849.
    1. Chen J., Mandel E., Thomson J., Wu Q., Callis T., Hammond S., Conlon F., Wang D. The role of microrna-1 and microrna-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 2006;38:228–233.
    1. Kuwabara Y., Ono K., Horie T., Nishi H., Nagao K., Kinoshita M., Watanabe S., Baba O., Kojima Y., Shizuta S., et al. Increased microrna-1 and microrna-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ. Cardiovasc. Genet. 2011;4:446–454.
    1. Azevedo L., Janiszewski M., Pontieri V., Pedro A., Bassi E., Tucci P., Laurindo F. Platelet-derived exosomes from septic shock patients induce myocardial dysfunction. Crit. Care. 2007;11:R120.
    1. Martinez-Lostao L., García-Alvarez F., Basáñez G., Alegre-Aguarón E., Desportes P., Larrad L., Naval J., Martínez-Lorenzo M.J., Anel A. Liposome-bound apo2l/trail is an effective treatment in a rabbit model of rheumatoid arthritis. Arthritis Rheum. 2010;62:2272–2282.
    1. Van Venrooij W.J., van Beers J.J., Pruijn G.J. Anti-ccp antibodies: The past, the present and the future. Nat. Rev. Rheumatol. 2011;7:391–398.
    1. Ireland J., Herzog J., Unanue E.R. Cutting edge: Unique T cells that recognize citrullinated peptides are a feature of protein immunization. J. Immunol. 2006;177:1421–1425.
    1. Pant S., Hilton H., Burczynski M.E. The multifaceted exosome: Biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem. Pharmacol. 2012;83:1484–1494.
    1. Vlassov A.V., Magdaleno S., Setterquist R., Conrad R. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta. 2012;1820:940–948.
    1. Fais S., Logozzi M., Lugini L., Federici C., Azzarito T., Zarovni N., Chiesi A. Exosomes: The ideal nanovectors for biodelivery. Biol. Chem. 2013;394:1–15.
    1. Kalra H., Simpson R., Ji H., Aikawa E., Altevogt P., Askenase P., Bond V.C., Borràs F.E., Breakefield X., Budnik V., et al. Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10:e1001450.
    1. Raimondo F., Morosi L., Chinello C., Magni F., Pitto M. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics. 2011;11:709–720.
    1. Smalheiser N. Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol. Direct. 2007;2:1–15.
    1. Rabinowits G., Gerçel-Taylor C., Day J., Taylor D., Kloecker G. Exosomal microrna: A diagnostic marker for lung cancer. Clin. Lung Cancer. 2009;10:42–46.
    1. Taylor D., Gercel-Taylor C. Microrna signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 2008;110:13–21.
    1. Smalley D.M., Sheman N.E., Nelson K., Theodorescu D. Isolation and identificationof potential urinary microparticle biomarkers of bladder cancer. J. Prot. Res. 2008;7:2088–2096.
    1. Liang B., Peng P., Chen S., Li L., Zhang M., Cao D., Yang J., Li H., Gui T., Li X., et al. Characterization and proteomic analysis of ovarian cancer-derived exosomes. J. Proteomics. 2013;80:171–182.
    1. Chen C.L., Lai Y.F., Tang P., Chien K.Y., Yu J.S., Tsai C.H., Chen H.W., Wu C.C., Chung T., Hsu C.W., et al. Comparative and targeted proteomic analyses of urinary microparticles from bladder cancer and herniapatients. J. Prot. Res. 2012;11:5611–5629.
    1. Alvarez-Erviti L., Seow Y., Yin H., Betts C., Lakhal S., Wood M.J. Delivery of sirna to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011;29:341–345.
    1. El-Andaloussi S., Lee Y., Lakhal-Littleton S., Li J., Seow Y., Gardiner C., Alvarez-Erviti L., Sargent I.L., Wood M.J. Exosome-mediated delivery of sirna in vitro and in vivo. Nat. Protoc. 2012;7:2112–2126.
    1. Ohno S., Takanashi M., Sudo K., Ueda S., Ishikawa A., Matsuyama N., Fujita K., Mizutani T., Ohgi T., Ochiya T., et al. Systemically injected exosomes targeted to egfr deliver antitumor microrna to breast cancer cells. Mol. Ther. 2013;21:185–191.
    1. Sun D., Zhuang X., Xiang X., Liu Y., Zhang S., Liu C., Barnes S., Grizzle W., Miller D., Zhang H.G. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther. 2010;18:1606–1614.
    1. Lai C.P., Breakefield X.O. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front. Physiol. 2012;3:228.
    1. Biancone L., Bruno S., Deregibus M.C., Tetta C., Camussi G. Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol. Dial. Transplant. 2012;27:3037–3042.
    1. Ratajczak M.Z., Kucia M., Jadczyk T., Greco N.J., Wojakowski W., Tendera M., Ratajczak J. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: Can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia. 2012;26:1166–1173.
    1. Chen T.S., Arslan F., Yin Y., Tan S.S., Lai R.C., Choo A.B., Padmanabhan J., Lee C.N., de Kleijn D.P., Lim S.K. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human esc-derived mscs. J. Transl. Med. 2011;9:1–10.
    1. Andre F., Chaput N., Schartz N.E., Flament C., Aubert N., Bernard J., Lemonnier F., Raposo G., Escudier B., Hsu D.H., et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J. Immunol. 2004;172:2126–2136.
    1. Schartz N.E., Chaput N., André F., Zitvogel L. From the antigen-presenting cell to the antigen-presenting vesicle: The exosomes. Curr. Opin. Mol. Ther. 2002;4:372–381.
    1. Cho J.A., Yeo D.J., Son H.Y., Kim H.W., Jung D.S., Ko J.K., Koh J.S., Kim Y.N., Kim C.W. Exosomes: A new delivery system for tumor antigens in cancer immunotherapy. Int. J. Cancer. 2005;114:613–622.
    1. Hosseini H.M., Fooladi A.A., Nourani M.R., Ghanezadeh F. Role of exosome in infectious disease. Inflamm. Allergy Drug Targets. 2012 in press.
    1. Martin-Jaular L., Nakayasu E.S., Ferrer M., Almeida I.C., del Portillo H.A. Exosomes from plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PLoS One. 2011;6:e26588.
    1. Nanjundappa R.H., Wang R., Xie Y., Umeshappa C.S., Chibbar R., Wei Y., Liu Q., Xiang J. Gp120-specific exosome-targeted T cell-based vaccine capable of stimulating dc- and cd4(+) T-independent ctl responses. Vaccine. 2011;29:3538–3547.
    1. Lattanzi L., Federico M. A strategy of antigen incorporation into exosomes: Comparing cross-presentation levels of antigens delivered by engineered exosomes and by lentiviral virus-like particles. Vaccine. 2012;30:7229–7237.

Source: PubMed

3
Suscribir