Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death

Stefania Raimondo, Flores Naselli, Simona Fontana, Francesca Monteleone, Alessia Lo Dico, Laura Saieva, Giovanni Zito, Anna Flugy, Mauro Manno, Maria Antonietta Di Bella, Giacomo De Leo, Riccardo Alessandro, Stefania Raimondo, Flores Naselli, Simona Fontana, Francesca Monteleone, Alessia Lo Dico, Laura Saieva, Giovanni Zito, Anna Flugy, Mauro Manno, Maria Antonietta Di Bella, Giacomo De Leo, Riccardo Alessandro

Abstract

Nanosized vesicles are considered key players in cell to cell communication, thus influencing physiological and pathological processes, including cancer. Nanovesicles have also been found in edible-plants and have shown therapeutic activity in inflammatory bowel diseases; however information on their role in affecting cancer progression is missing.Our study identify for the first time a fraction of vesicles from lemon juice (Citrus limon L.), obtained as a result of different ultracentrifugation, with density ranging from 1,15 to 1,19 g/ml and specific proteomic profile. By using an in vitro approach, we show that isolated nanovesicles inhibit cancer cell proliferation in different tumor cell lines, by activating a TRAIL-mediated apoptotic cell death. Furthermore, we demonstrate that lemon nanovesicles suppress CML tumor growth in vivo by specifically reaching tumor site and by activating TRAIL-mediated apoptotic cell processes. Overall, this study suggests the possible use of plant-edible nanovesicles as a feasible approach in cancer treatment.

Keywords: Citrus limon L.; TRAIL-mediated cell death; cancer; exosome-like nanovesicles.

Conflict of interest statement

CONFLICTS OF INTEREST

The authors declare that there is no conflicts of interest that could be perceived as prejudicing the impartiality of the research reported. A patent on the use of Citrus limon L.-derived nanovesicles as antineoplastic agents has been filed (RM2015A000162).

Figures

Figure 1. Nanovesicles characterization and uptake by…
Figure 1. Nanovesicles characterization and uptake by target cells
A. Citrus nanovesicles were collected after 30% sucrose gradient ultracentrifugation and analyzed at transmission electron microscope. The scale bar indicates 200 nm. B. Nanovesicles size distribution was determined by DLS analysis. C. The Venn diagram shows a comparison between the Citrus nanovesicle data set and protein ExoCarta data set. The overlapping area contains about 60% of proteins identified in Citrus nanovesicles. Most of these common proteins belong to functional groups highly associated with exosomes. D. Analysis at confocal microscopy of A549 (left panel) or LAMA84 cells (right panel) treated, for 3 and 6 hours, with 20 μg/ml of Citrus nanovesicles, compared with untreated cells (Ctrl). Cells were stained with Actin Green 488 (green), nuclear counterstaining was performed using Hoechst (blue), nanovesicles were labeled with PKH26 (red).
Figure 2. Citrus nanovesicles inhibit the growth…
Figure 2. Citrus nanovesicles inhibit the growth of tumor cell lines
A. Cell growth was measured by MTT assay after 24, 48, 72 h of treatment with 5 or 20 μg/ml of nanovesicles. The values were plotted as absorbance. Each point represents the mean ± SD of three independent experiments. B. Cancer cell survival was assessed by colony formation assay in methylcellulose. Cells were plated in methylcellulose in presence or not of 5 and 20 μg/ml of Citrus nanovesicles. The values were plotted as fold change compared to control cells (untreated cells). Each point in the histogram represents the mean ± SD of three independent experiments. Asterisks indicate statistically significant values in comparison to control (Ctrl) (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001). Pictures are representative of observed colonies.
Figure 3. Citrus nanovesicles affect the balance…
Figure 3. Citrus nanovesicles affect the balance between pro- and anti-apoptotic molecules
A. Real-time PCR analysis was performed on A549, SW480 and LAMA84 cell lines treated for 24 or 48 hours with 5 or 20 μg/ml of nanovesicles to evaluate mRNA levels of the pro-apoptotic and anti-apoptotic genes. The values were plotted as fold change compared to control (untreated cells). Each point represents the mean ± SD of three independent experiments. Asterisks indicate statistically significant values in comparison to control (Ctrl) (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001). B. Western blot analysis was performed on cells treated for 48 h with 20 μg/ml of Citrus nanovesicles. Protein levels of the pro-apoptotic (BAX) and anti-apoptotic (BCL-xL) were evaluated. Blots were stripped and subsequently re-probed with an antibody against β-actin to ensure equal loading. Histograms represent densitometry analysis of protein levels in treated cells (Nanoves) versus untreated cells (Ctrl). Each point represents the mean ± SD of three independent experiments.
Figure 4. Citrus nanovesicles induce TRAIL-mediated cell…
Figure 4. Citrus nanovesicles induce TRAIL-mediated cell death
A. Real-time PCR analysis was performed on A549, SW480 and LAMA84 cell lines treated for 24 or 48 hours with 5 or 20 μg/ml of Citrus nanovesicles to evaluate mRNA levels of Trail and Dr5. The values were plotted as fold change compared to control (untreated cells). Each point represents the mean ± SD of three independent experiments. B. ELISA was performed to determine TRAIL concentration in the conditioned medium of A549, SW480 and LAMA84 cell lines treated for 24 or 48 hours with 5 or 20 μg/ml of Citrus nanovesicles. The values are expressed in ng/ml. Each point represents the mean ± SD of three independent experiments. Asterisks indicate statistically significant values in comparison to control (Ctrl). C. Cell growth was measured by MTT assay after 48 h of treatment with 20 μg/ml of nanovesicles in presence or not of 5 or 20 ng/ml of neutralizing anti TRAIL antibodies. The values were plotted as % of growth vs control (untreated cells). Each point represents the mean ± SD of three independent experiments. D. Cell death was detected by Annexin V staining after 48 h of treatment with 20 μg/ml of Citrus nanovesicles in presence or not of 20 ng/ml of neutralizing anti TRAIL antibodies. Figure shows representative overlay histogram from untreated cells (solid line), cells treated with nanovesicles (dashed line) or with nanovesicles and neutralizing anti TRAIL antibodies (dotted line). Histogram reported % of Annexin V positive cells in samples treated compared to untreated (Ctrl). Asterisks indicate statistically significant differences (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001).
Figure 5. Citrus nanovesicles inhibit in vivo…
Figure 5. Citrus nanovesicles inhibit in vivo tumor growth
A. LAMA84 cells were injected subcutaneously in NOD/SCID mice as described. After palpable tumor formation, mice were treated as described in Materials and Methods. Comparison of the median tumor weight was used as an index of the antitumor efficacy of Citrus nanovesicles. Asterisks indicate statistically significant values in comparison to control (Ctrl) (***p ≤ 0.001) B. mRNA levels of pro-, anti-apoptotic genes, Trail and Dr5 were evaluated in samples from mice xenografts. The values were plotted as fold change compared to xenograft control. Each point represents the mean ± SD for three independent experiments. Asterisks indicate statistically significant values in comparison to control (Ctrl) (**p ≤ 0.01; ***p ≤ 0.001). C. Representative images of confocal fluorescence microscopy show TRAIL (green) immunolabeling in paraffin sections from xenografts. Nuclear counterstaining was performed using Hoescht (blue). Arrows indicate TRAIL positive cells. D. Multiplex cytokine evaluation of VEGF-A, IL6 and IL8 in the serum of mice treated or not with nanovesicles. The values are expressed in pg/ml (upper panel). mRNA levels of Vegf-A and Vegf-A receptor were evaluated in samples from mice xenografts (lower panel). The values were plotted as fold change compared to control. Each point represents the mean ± SD for three independent experiments. Asterisks indicate statistically significant values in comparison to control (Ctrl) (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001).
Figure 6. In vivo Citrus nanovesicles biodistribution
Figure 6. In vivo Citrus nanovesicles biodistribution
A. Representative in vitro fluorescence images of DiR-labeled Citrus nanovesicles dilutions from 50 to 5 μg of nanovesicles in 150 μl of PBS; the quantification of fluorescence signal was calculated in the entire area of each well through the use of ROIs. Data are expressed as average radiance efficiency ([p/s/cm2/steradian]/[μW/cm2]). B. NOD/SCID mice bearing CML xenograft tumors in the right flank were injected intraperitoneally with PBS, Free-DiR, 50 μg Nanovesicles-DiR in a volume of 150 μl PBS. Mice were imaged at 15 min, 1 h and 24 h post injection. A scale of the radiance efficiency is presented to the right of each live mouse image. C. Organs and tumors were excised and imaged after 24 h. A scale of the radiance efficiency is presented to the right. Histogram represents ex vivo quantification of tumor fluorescence.

References

    1. Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci. 2013;14:5338–5366.
    1. Lakkaraju A, Rodriguez-Boulan E. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 2008;18:199–209.
    1. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883–891.
    1. Saman S, Kim W, Raya M, Visnick Y, Miro S, Jackson B, McKee AC, Alvarez VE, Lee NC, Hall GF. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem. 2012;287:3842–3849.
    1. Lin J, Li J, Huang B, Liu J, Chen X, Chen XM, Xu YM, Huang LF, Wang XZ. Exosomes: Novel Biomarkers for Clinical Diagnosis. ScientificWorldJournal. 2015;2015:657086.
    1. Regente M, Corti-Monzon G, Maldonado AM, Pinedo M, Jorrin J, de la Canal L. Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins. FEBS Lett. 2009;583:3363–3366.
    1. Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, Wang Q, Xiang X, Guo H, Zhang L, Dryden G, Yan J, Miller D, Zhang HG. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22:522–534.
    1. Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng ZB, Wang B, Zhang L, Roth M, Welti R, Mobley J, Jun Y, Miller D, Zhang HG. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21:1345–1357.
    1. Wang L, Wang J, Fang L, Zheng Z, Zhi D, Wang S, Li S, Ho CT, Zhao H. Anticancer activities of citrus peel polymethoxyflavones related to angiogenesis and others. Biomed Res Int. 2014;2014:453972.
    1. Manthey JA, Grohmann K, Guthrie N. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr Med Chem. 2001;8:135–153.
    1. Benavente-Garcia O, Castillo J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem. 2008;56:6185–6205.
    1. Blagosklonny MV. Overcoming limitations of natural anticancer drugs by combining with artificial agents. Trends Pharmacol Sci. 2005;26:77–81.
    1. Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer. 2008;8:782–798.
    1. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest. 1999;104:155–162.
    1. Nesterov A, Nikrad M, Johnson T, Kraft AS. Oncogenic Ras sensitizes normal human cells to tumor necrosis factor-alpha-related apoptosis-inducing ligand-induced apoptosis. Cancer Res. 2004;64:3922–3927.
    1. Falschlehner C, Emmerich CH, Gerlach B, Walczak H. TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol. 2007;39:1462–1475.
    1. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010;73:1907–1920.
    1. Ishibashi M, Ohtsuki T. Studies on search for bioactive natural products targeting TRAIL signaling leading to tumor cell apoptosis. Med Res Rev. 2008;28:688–714.
    1. Ouyang L, Luo Y, Tian M, Zhang SY, Lu R, Wang JH, Kasimu R, Li X. Plant natural products: from traditional compounds to new emerging drugs in cancer therapy. Cell Prolif. 2014;47:506–515.
    1. Alshatwi AA, Shafi G, Hasan TN, Al-Hazzani AA, Alsaif MA, Alfawaz MA, Lei KY, Munshi A. Apoptosis-mediated inhibition of human breast cancer cell proliferation by lemon citrus extract. Asian Pac J Cancer Prev. 2011;12:1555–1559.
    1. Luo G, Guan X, Zhou L. Apoptotic effect of citrus fruit extract nobiletin on lung cancer cell line A549 in vitro and in vivo. Cancer Biol Ther. 2008;7:966–973.
    1. Tse AK, Chow KY, Cao HH, Cheng CY, Kwan HY, Yu H, Zhu GY, Wu YC, Fong WF, Yu ZL. The herbal compound cryptotanshinone restores sensitivity in cancer cells that are resistant to the tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem. 2013;288:29923–29933.
    1. Beranova L, Pombinho AR, Spegarova J, Koc M, Klanova M, Molinsky J, Klener P, Bartunek P, Andera L. The plant alkaloid and anti-leukemia drug homoharringtonine sensitizes resistant human colorectal carcinoma cells to TRAIL-induced apoptosis via multiple mechanisms. Apoptosis. 2013;18:739–750.
    1. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 1996;271:12687–12690.
    1. Blagosklonny MV. Prospective strategies to enforce selectively cell death in cancer cells. Oncogene. 2004;23:2967–2975.
    1. Zhang Y, Zhang B. TRAIL resistance of breast cancer cells is associated with constitutive endocytosis of death receptors 4 and 5. Mol Cancer Res. 2008;6:1861–1871.
    1. Corrado C, Raimondo S, Saieva L, Flugy AM, De Leo G, Alessandro R. Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8-dependent survival of leukemia cells. Cancer Lett. 2014;348:71–76.
    1. Noto R, Santangelo MG, Ricagno S, Mangione MR, Levantino M, Pezzullo M, Martorana V, Cupane A, Bolognesi M, Manno M. The tempered polymerization of human neuroserpin. PLoS One. 2012;7:e32444.
    1. Raimondo S, Saieva L, Corrado C, Fontana S, Flugy A, Rizzo A, De Leo G, Alessandro R. Chronic myeloid leukemia-derived exosomes promote tumor growth through an autocrine mechanism. Cell Commun Signal. 2015;13:8.
    1. Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996;68:850–858.
    1. Simpson RJ, Kalra H, Mathivanan S. ExoCarta as a resource for exosomal research. J Extracell Vesicles. 2012;1
    1. Corrado C, Raimondo S, Flugy AM, Fontana S, Santoro A, Stassi G, Marfia A, Iovino F, Arlinghaus R, Kohn EC, Leo GD, Alessandro R. Carboxyamidotriazole inhibits cell growth of imatinib-resistant chronic myeloid leukaemia cells including T315I Bcr-Abl mutant by a redox-mediated mechanism. Cancer Lett. 2011;300:205–214.

Source: PubMed

3
Suscribir