Natural cycle versus artificial cycle in frozen-thawed embryo transfer: A randomized prospective trial

Marzieh Agha-Hosseini, Leila Hashemi, Ashraf Aleyasin, Marzieh Ghasemi, Fatemeh Sarvi, Maryam Shabani Nashtaei, Mahshad Khodarahmian, Marzieh Agha-Hosseini, Leila Hashemi, Ashraf Aleyasin, Marzieh Ghasemi, Fatemeh Sarvi, Maryam Shabani Nashtaei, Mahshad Khodarahmian

Abstract

Objective: To investigate whether there was a difference in pregnancy outcomes between modified natural cycle frozen-thawed embryo transfer (NC-FET) cycles and artificial cycles (AC)-FET in women who all had regular menstrual cycles.

Materials and methods: One hundred seventy patients who met the inclusion criteria and had at least two cryopreserved embryos were included in a prospective randomized controlled trial. Eighty-five patients were randomized based on Bernoulli distribution into the following two groups: 1) Modified NC-FET using human chorionic gonadotropin for ovulation induction and 2) AC-FET, in which endometrial timing was programmed with estrogen and progesterone. The main studied outcome measure was the clinical pregnancy rate per cycle.

Results: No significant differences were found between the two groups with regard to the chemical, clinical, and ongoing pregnancy rates (48.2% vs 45.9%, p>0.05; 38.9% vs 35.3%, p>0.05; and 37.6% vs 34.1%, p>0.05, respectively), as well as the live birth or miscarriage rates per cycle (35.3% vs 31.8%, p>0.05; and 1.2% vs 1.2%, p>0.05, respectively).

Conclusion: These findings suggest that although both FET protocols are equally effective in terms of pregnancy outcomes in women with regular menstrual cycles, NC-FET is more favorable because it requires no medication, has no adverse events, and has a significant cost reduction.

Keywords: Frozen-thawed embryo transfer; artificial cycle; clinical pregnancy rate; natural cycle.

Conflict of interest statement

Conflict of interest: The authors declare that there are no conflicts of interest that could be perceived as prejudicing the impartially of the research reported.

Figures

Figure 1. Participant consolitated standards of reparting…
Figure 1. Participant consolitated standards of reparting trials flow diagram FET: Frozen-thawed embryo transfer

References

    1. Givens CR, Markun LC, Ryan IP, Chenette PE, Herbert CM, Schriock ED. Outcomes of natural cycles versus programmed cycles for 1677 frozen–thawed embryo transfers. Reprod Biomed Online. 2009;19:380–4.
    1. Zheng Y, Dong X, Huang B, Zhang H, Ai J. The artificial cycle method improves the pregnancy outcome in frozen–thawed embryo transfer: a retrospective cohort study. Gynecol Endocrinol. 2015;31:70–4.
    1. McLernon D, Harrild K, Bergh C, Davies MJ, de Neubourg D, Dumoulin JC, et al. Clinical effectiveness of elective single versus double embryo transfer: meta-analysis of individual patient data from randomised trials. BMJ. 2010;341:c6945.
    1. Veleva Z, Karinen P, Tomas C, Tapanainen JS, Martikainen H. Elective single embryo transfer with cryopreservation improves the outcome and diminishes the costs of IVF/ICSI. Hum Reprod. 2009;24:1632–9.
    1. Zheng Y, Li Z, Xiong M, Luo T, Dong X, Huang B, et al. Hormonal replacement treatment improves clinical pregnancy in frozen-thawed embryos transfer cycles: a retrospective cohort study. Am J Transl Res. 2014;6:85.
    1. Groenewoud ER, Macklon NS, Cohlen BJ. Cryo-thawed embryo transfer: natural versus artificial cycle. A non-inferiority trial.(ANTARCTICA trial). BMC Womens Health. 2012;12:27.
    1. Nardo LG, Nikas G, Makrigiannakis A. Molecules in blastocyst implantation. Role of matrix metalloproteinases, cytokines and growth factors. J Reprod Med. 2003;48:137–47.
    1. Schild RL, Knobloch C, Dorn C, Fimmers R, Van Der Ven H, Hansmann M. Endometrial receptivity in an in vitro fertilization program as assessed by spiral artery blood flow, endometrial thickness, endometrial volume, and uterine artery blood flow. Fertil Steril. 2001;75:361–6.
    1. Al-Shawaf T, Yang D, Al-Magid Y, Seaton A, Iketubosin F, Craft I. Infertility: Ultrasonic monitoring during replacement of frozen/thawed embryos in natural and hormone replacement cycles. Hum Reprod. 1993;8:2068–74.
    1. Sathanandan M, Macnamee M, Rainsbury P, Wick K, Brinsden P, Edwards R. Replacement of frozen-thawed embryos in artificial and natural cycles: a prospective semi-randomized study. Hum Reprod. 1991;6:685–7.
    1. Groenewoud ER, Cantineau AE, Kollen BJ, Macklon NS, Cohlen BJ. What is the optimal means of preparing the endometrium in frozen–thawed embryo transfer cycles? A systematic review and meta-analysis. Hum Reprod Update. 2013;0:1–13.
    1. Ghobara T, Vanderkerchove P. Cycle regimens for frozen-thawed embryo transfer. Cochrane Database Syst Rev. 2008;(1):CD003414.
    1. Tomás C, Alsbjerg B, Martikainen H, Humaidan P. Pregnancy loss after frozen-embryo transfer—a comparison of three protocols. Fertil Steril. 2012;98:1165–9.
    1. Morozov V, Ruman J, Kenigsberg D, Moodie G, Brenner S. Natural cycle cryo-thaw transfer may improve pregnancy outcome. J Assist Reprod Genet. 2007;24:119–23.
    1. Chang EM, Han JE, Kim YS, Lyu SW, Lee WS, Yoon TK. Use of the natural cycle and vitrification thawed blastocyst transfer results in better in-vitro fertilization outcomes. J Assist Reprod Genet. 2011;28:369–74.
    1. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 2007;67:73–80.
    1. Lahav-Baratz S, Koifman M, Shiloh H, Ishai D, Wiener-Megnazi Z, Dirnfeld M. Analyzing factors affecting the success rate of frozen–thawed embryos. J Assist Reprod Genet. 2003;20:444–8.
    1. Urman B, Balaban B, Yakin K. Impact of fresh-cycle variables on the implantation potential of cryopreserved-thawed human embryos. Fertil Steril. 2007;87:310–5.
    1. Gelbaya TA, Nardo LG, Hunter HR, Fitzgerald CT, Horne G, Pease EE, et al. Cryopreserved-thawed embryo transfer in natural or down-regulated hormonally controlled cycles: a retrospective study. Fertil Steril. 2006;85:603–9.
    1. Xiong T, Zhao Y, Hu D, Meng J, Wang R, Yang X, Ai J, et al. Administration of calcitonin promotes blastocyst implantation in mice by up-regulating integrin β3 expression in endometrial epithelial cells. Hum Reprod. 2012;27:3540–51.
    1. Aghajanova L. Update on the role of leukemia inhibitory factor in assisted reproduction. Curr Opin Obstet Gynecol. 2010;22:213–9.
    1. Fogle RH, Li A, Paulson RJ. Modulation of HOXA10 and other markers of endometrial receptivity by age and human chorionic gonadotropin in an endometrial explant model. Fertil Steril. 2010;93:1255–9.
    1. Ma W-g, Song H, Das SK, Paria BC, Dey SK. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. PNAS. 2003;100:2963–8.
    1. Fritz R, Jindal S, Feil H, Buyuk E. Elevated serum estradiol levels in artificial autologous frozen embryo transfer cycles negatively impact ongoing pregnancy and live birth rates. J Assist Reprod Genet. 2017;34:1633–8.
    1. Altmäe S, Tamm-Rosenstein K, Esteban FJ, Simm J, Kolberg L, Peterson H, et al. Endometrial transcriptome analysis indicates superiority of natural over artificial cycles in recurrent implantation failure patients undergoing frozen embryo transfer. Reprod Biomed Online. 2016;32:597–613.
    1. Konc J, Kanyo K, Varga E, Kriston R, Cseh S. The effect of cycle regimen used for endometrium preparation on the outcome of day 3 frozen embryo transfer cycle. Fertil Steril. 2010;94:767–8.
    1. Orvieto R, Feldman N, Lantsberg D, Manela D, Zilberberg E, Haas J. Natural cycle frozen-thawed embryo transfer-can we improve cycle outcome? J Assist Reprod Genet. 2016;33:611–5.
    1. Peeraer K, Couck I, Debrock S, De Neubourg D, De Loecker P, Tomassetti C, et al. Frozen–thawed embryo transfer in a natural or mildly hormonally stimulated cycle in women with regular ovulatory cycles: a RCT. Hum Reprod. 2015;30:2552–62.
    1. Groenewoud E, Cohlen B, Al-Oraiby A, Brinkhuis EA, Broekmans FJ, de Bruin JP, et al. A randomized controlled, non-inferiority trial of modified natural versus artificial cycle for cryo-thawed embryo transfer. Hum Reprod. 2016;31:1483–92.
    1. Ghobara T, Gelbaya TA, Ayeleke RO. Cycle regimens for frozen-thawed embryo transfer. Cochrane Database Syst Rev. 2017;7:CD003414.
    1. Hancke K, More S, Kreienberg R, Weiss JM. Patients undergoing frozen-thawed embryo transfer have similar live birth rates in spontaneous and artificial cycles. J Assist Reprod Genet. 2012;29:403–7.
    1. Le QV, Abhari S, Abuzeid OM, DeAnna J, Satti MA, Abozaid T, et al. Modified natural cycle for embryo transfer using frozen-thawed blastocysts: A satisfactory option. Eur J Obstet Gynecol Reprod Biol. 2017;213:58–63.

Source: PubMed

3
Suscribir