Multidrug resistant Pseudomonas aeruginosa in Estonian hospitals

Kaidi Telling, Mailis Laht, Age Brauer, Maido Remm, Veljo Kisand, Matti Maimets, Tanel Tenson, Irja Lutsar, Kaidi Telling, Mailis Laht, Age Brauer, Maido Remm, Veljo Kisand, Matti Maimets, Tanel Tenson, Irja Lutsar

Abstract

Background: We aimed to identify the main spreading clones, describe the resistance mechanisms associated with carbapenem- and/or multidrug-resistant P. aeruginosa and characterize patients at risk of acquiring these strains in Estonian hospitals.

Methods: Ninety-two non-duplicated carbapenem- and/or multidrug-resistant P. aeruginosa strains were collected between 27th March 2012 and 30th April 2013. Clinical data of the patients was obtained retrospectively from the medical charts. Clonal relationships of the strains were determined by whole genome sequencing and analyzed by multi-locus sequence typing. The presence of resistance genes and beta-lactamases and their origin was determined. Combined-disk method and PCR was used to evaluate carbapenemase and metallo-beta-lactamase production.

Results: Forty-three strains were carbapenem-resistant, 11 were multidrug-resistant and 38 were both carbapenem- and multidrug-resistant. Most strains (54%) were isolated from respiratory secretions and caused an infection (74%). Over half of the patients (57%) were ≥ 65 years old and 85% had ≥1 co-morbidity; 96% had contacts with healthcare and/or had received antimicrobial treatment in the previous 90 days. Clinically relevant beta-lactamases (OXA-101, OXA-2 and GES-5) were found in 12% of strains, 27% of which were located in plasmids. No Ambler class B beta-lactamases were detected. Aminoglycoside modifying enzymes were found in 15% of the strains. OprD was defective in 13% of the strains (all with CR phenotype); carbapenem resistance triggering mutations (F170 L, W277X, S403P) were present in 29% of the strains. Ciprofloxacin resistance correlated well with mutations in topoisomerase genes gyrA (T83I, D87N) and parC (S87 L). Almost all strains (97%) with these mutations showed ciprofloxacin-resistant phenotype. Multi-locus sequence type analysis indicated high diversity at the strain level - 36 different sequence types being detected. Two sequence types (ST108 (n = 23) and ST260 (n = 18)) predominated. Whereas ST108 was associated with localized spread in one hospital and mostly carbapenem-resistant phenotype, ST260 strains occurred in all hospitals, mostly with multi-resistant phenotype and carried different resistance genotype/machinery.

Conclusions: Diverse spread of local rather than international P. aeruginosa strains harboring multiple chromosomal mutations, but not plasmid-mediated Ambler class B beta-lactamases, were found in Estonian hospitals.

Trial registration: This trial was registered retrospectively in ClinicalTrials.gov ( NCT03343119 ).

Keywords: Beta-lactamases; Carbapenem resistance; Outbreak; WGS (whole-genome sequencing).

Conflict of interest statement

Ethics approval and consent to participate

The study protocol was approved with a waiver of informed consent by the Ethics Committee of the University of Tartu.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Analysis of 92 sequenced carbapenem or/and multiresistant P.aeruginosa genomes. A maximum-likelihood tree and MLST analysis, presence of beta-lactamases and their location (either in plasmid or chromosome) and aminoglycoside modifying enzymes, selected mutations in quinolone resistance-determining region (QRDR) and OprD. Tested antimicrobial susceptibilities are presented as follows: green color – susceptible; orange color – intermediate and red – resistant strain. CARBA represents coordinated results of phenotypic testing of class B beta-lactamases by combined-disk method and PCR where tested strains are marked with a dark blue color

References

    1. Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev. 2011;35(4):652–680. doi: 10.1111/j.1574-6976.2011.00269.x.
    1. Estepa V, Rojo-Bezares B, Torres C, Saenz Y. Faecal carriage of Pseudomonas aeruginosa in healthy humans: antimicrobial susceptibility and global genetic lineages. FEMS Microbiol Ecol. 2014;89(1):15–19. doi: 10.1111/1574-6941.12301.
    1. Ciofu O, Tolker-Nielsen T, Jensen PO, Wang H, Hoiby N. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. 2015;85:7–23. doi: 10.1016/j.addr.2014.11.017.
    1. Wolf SE, Phelan HA, Arnoldo BD. The year in burns 2013. Burns. 2014;40(8):1421–1432. doi: 10.1016/j.burns.2014.10.026.
    1. Gomez-Zorrilla S, Camoez M, Tubau F, Periche E, Canizares R, Dominguez MA, Ariza J, Pena C. Antibiotic pressure is a major risk factor for rectal colonization by multidrug-resistant Pseudomonas aeruginosa in critically ill patients. Antimicrob Agents Chemother. 2014;58(10):5863–5870. doi: 10.1128/AAC.03419-14.
    1. Acharya M, Joshi PR, Thapa K, Aryal R, Kakshapati T, Sharma S. Detection of metallo-beta-lactamases-encoding genes among clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital, Kathmandu, Nepal. BMC Res Notes. 2017;10(1):718. doi: 10.1186/s13104-017-3068-9.
    1. Oliver A, Mulet X, Lopez-Causape C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat. 2015;21-22:41–59. doi: 10.1016/j.drup.2015.08.002.
    1. Antimicrobial consumption database (ESAC-Net) [].
    1. Antimicrobial resistance surveillance in Europe 2016 [].
    1. Antimicrobial resistance surveillance in Europe 2012 [].
    1. Loivukene K, Sepp E, Adamson V, Mitt P, Kallandi U, Otter K, Naaber P. Prevalence and antibiotic susceptibility of Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae in Estonian intensive care units in comparison with European data. Scand J Infect Dis. 2006;38(11–12):1001–1008. doi: 10.1080/00365540600786507.
    1. Mitt P, Adamson V, Loivukene K, Lang K, Telling K, Paro K, Room A, Naaber P, Maimets M. Epidemiology of nosocomial bloodstream infections in Estonia. J Hosp Infect. 2009;71(4):365–370. doi: 10.1016/j.jhin.2009.01.008.
    1. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi: 10.1111/j.1469-0691.2011.03570.x.
    1. EUCAST: Clinical breakpoints [].
    1. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–123. doi: 10.1016/j.diagmicrobio.2010.12.002.
    1. Boom R, Sol C, Wertheim-van Dillen P. Rapid purification of ribosomal RNAs from neutral agarose gels. Nucleic Acids Res. 1990;18(8):2195. doi: 10.1093/nar/18.8.2195.
    1. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi: 10.1089/cmb.2012.0021.
    1. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Ponten T, Ussery DW, Aarestrup FM, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355–1361. doi: 10.1128/JCM.06094-11.
    1. Marttinen P, Hanage WP, Croucher NJ, Connor TR, Harris SR, Bentley SD, Corander J. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 2012;40(1):e6. doi: 10.1093/nar/gkr928.
    1. Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015;45(6):568–585. doi: 10.1016/j.ijantimicag.2015.03.001.
    1. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals 2011-2012 [].
    1. Sundararajan V, Henderson T, Perry C, Muggivan A, Quan H, Ghali WA. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J Clin Epidemiol. 2004;57(12):1288–1294. doi: 10.1016/j.jclinepi.2004.03.012.
    1. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL /. In.
    1. Lin KY, Lauderdale TL, Wang JT, Chang SC. Carbapenem-resistant Pseudomonas aeruginosa in Taiwan: prevalence, risk factors, and impact on outcome of infections. J Microbiol Immunol Infect. 2016;49(1):52–59. doi: 10.1016/j.jmii.2014.01.005.
    1. Kos VN, Deraspe M, McLaughlin RE, Whiteaker JD, Roy PH, Alm RA, Corbeil J, Gardner H. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother. 2015;59(1):427–436. doi: 10.1128/AAC.03954-14.
    1. Cabot G, Ocampo-Sosa AA, Dominguez MA, Gago JF, Juan C, Tubau F, Rodriguez C, Moya B, Pena C, Martinez-Martinez L, et al. Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones. Antimicrob Agents Chemother. 2012;56(12):6349–6357. doi: 10.1128/AAC.01388-12.
    1. Del Barrio-Tofino E, Lopez-Causape C, Cabot G, Rivera A, Benito N, Segura C, Montero MM, Sorli L, Tubau F, Gomez-Zorrilla S, et al. Genomics and Susceptibility Profiles of Extensively Drug-Resistant Pseudomonas aeruginosa Isolates from Spain. Antimicrob Agents Chemother. 2017;61(11): e01589–17.
    1. Cohen R, Babushkin F, Cohen S, Afraimov M, Shapiro M, Uda M, Khabra E, Adler A, Ben Ami R, Paikin S. A prospective survey of Pseudomonas aeruginosa colonization and infection in the intensive care unit. Antimicrob Resist Infect Control. 2017;6:7. doi: 10.1186/s13756-016-0167-7.
    1. Mikulska M, Viscoli C, Orasch C, Livermore DM, Averbuch D, Cordonnier C, Akova M. Aetiology and resistance in bacteraemias among adult and paediatric haematology and cancer patients. J Inf Secur. 2014;68(4):321–331.
    1. Chen SH, Chen RY, Xu XL, Chen HT. Multilocus sequencing typing of Pseudomonas aeruginosa isolates and analysis of potential pathogenicity of typical genotype strains from occupational oxyhelium saturation divers. Undersea Hyperb Med. 2014;41(2):135–141.
    1. Mudau M, Jacobson R, Minenza N, Kuonza L, Morris V, Engelbrecht H, Nicol MP, Bamford C. Outbreak of multi-drug resistant Pseudomonas aeruginosa bloodstream infection in the haematology unit of a south African academic hospital. PLoS One. 2013;8(3):e55985. doi: 10.1371/journal.pone.0055985.
    1. Pobiega M, Maciag J, Chmielarczyk A, Romaniszyn D, Pomorska-Wesolowska M, Ziolkowski G, Heczko PB, Bulanda M, Wojkowska-Mach J. Molecular characterization of carbapenem-resistant Pseudomonas aeruginosa strains isolated from patients with urinary tract infections in southern Poland. Diagn Microbiol Infect Dis. 2015;83(3):295–297. doi: 10.1016/j.diagmicrobio.2015.07.022.
    1. Samuelsen O, Toleman MA, Sundsfjord A, Rydberg J, Leegaard TM, Walder M, Lia A, Ranheim TE, Rajendra Y, Hermansen NO, et al. Molecular epidemiology of metallo-beta-lactamase-producing Pseudomonas aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion. Antimicrob Agents Chemother. 2010;54(1):346–352. doi: 10.1128/AAC.00824-09.
    1. European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2016. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2017.URL:
    1. Sood G, Perl TM. Outbreaks in health care settings. Infect Dis Clin N Am. 2016;30(3):661–687. doi: 10.1016/j.idc.2016.04.003.
    1. Popovich KJ, Snitkin ES. Whole genome sequencing-implications for infection prevention and outbreak investigations. Curr Infect Dis Rep. 2017;19(4):15. doi: 10.1007/s11908-017-0570-0.
    1. Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009;49(11):1749–1755. doi: 10.1086/647952.

Source: PubMed

3
Suscribir