Localized mammographic density is associated with interval cancer and large breast cancer: a nested case-control study

Fredrik Strand, Edward Azavedo, Roxanna Hellgren, Keith Humphreys, Mikael Eriksson, John Shepherd, Per Hall, Kamila Czene, Fredrik Strand, Edward Azavedo, Roxanna Hellgren, Keith Humphreys, Mikael Eriksson, John Shepherd, Per Hall, Kamila Czene

Abstract

Background: High mammographic density is associated with breast cancer and with delayed detection. We have examined whether localized density, at the site of the subsequent cancer, is independently associated with being diagnosed with a large-sized or interval breast cancer.

Methods: Within a prospective cohort of 63,130 women, we examined 891 women who were diagnosed with incident breast cancer. For 386 women, retrospective localized density assessment was possible. The main outcomes were interval cancer vs. screen-detected cancer and large (> 2 cm) vs. small cancer. In negative screening mammograms, overall and localized density were classified reflecting the BI-RADS standard. Density concordance probabilities were estimated through multinomial regression. The associations between localized density and the two outcomes were modeled through logistic regression, adjusted for overall density, age, body mass index, and other characteristics.

Results: The probabilities of concordant localized density were 0.35, 0.60, 0.38, and 0.32 for overall categories "A," "B," "C," and "D." Overall density was associated with large cancer, comparing density category D to A with OR 4.6 (95%CI 1.8-11.6) and with interval cancer OR 31.5 (95%CI 10.9-92) among all women. Localized density was associated with large cancer at diagnosis with OR 11.8 (95%CI 2.7-51.8) among all women and associated with first-year interval cancer with OR 6.4 (0.7 to 58.7) with a significant linear trend p = 0.027.

Conclusions: Overall density often misrepresents localized density at the site where cancer subsequently arises. High localized density is associated with interval cancer and with large cancer. Our findings support the continued effort to develop and examine computer-based measures of localized density for use in personalized breast cancer screening.

Keywords: Breast cancer; Early detection; Mammographic density; Mammography; Screening.

Conflict of interest statement

Ethics approval and consent to participate

The regional ethical review board at Karolinska Institutet, Stockholm, Sweden, granted ethical approval (DNR2009/254-31/4) and all participants gave written informed consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Examples of cases with discordant overall and localized density. DIAGNOSIS denotes the mammogram at the time of diagnosis. PRIOR denotes the mammogram from the prior screening (median time 1.99 years before DIAGNOSIS). DIAGNOSIS was used to localize the tumor (red arrow), while PRIOR was used to assess the overall and localized (red circle) density
Fig. 2
Fig. 2
Distribution across categories of the overall and localized mammographic density of the 386 women with incident breast cancer for which local density assessment was performed. Category A is the least dense, and category D is the most dense. Marker placements within each rectangle carry no meaning; jittered for enhanced visibility. There is a moderate correlation between the two density parameters (r = 0.42). Percentage numbers show the proportion of cases within each overall density category

References

    1. Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, Paterson AD. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005;6(10):798–808.
    1. Blanch J, Sala M, Ibanez J, Domingo L, Fernandez B, Otegi A, Barata T, Zubizarreta R, Ferrer J, Castells X, et al. Impact of risk factors on different interval cancer subtypes in a population-based breast cancer screening programme. PLoS One. 2014;9(10):e110207.
    1. Kerlikowske K, Zhu W, Tosteson AN, Sprague BL, Tice JA, Lehman CD, Miglioretti DL. Identifying women with dense breasts at high risk for interval cancer: a cohort study. Ann Intern Med. 2015;162(10):673–681.
    1. Lowery JT, Byers T, Hokanson JE, Kittelson J, Lewin J, Risendal B, Singh M, Mouchawar J. Complementary approaches to assessing risk factors for interval breast cancer. Cancer Causes Control. 2011;22(1):23–31.
    1. Pollán M, Ascunce N, Ederra M, Murillo A, Erdozáin N, Alés-Martínez JE, Pastor-Barriuso R. Mammographic density and risk of breast cancer according to tumor characteristics and mode of detection: a Spanish population-based case-control study. Breast Cancer Res. 2013;15(1):R9.
    1. Roubidoux MA, Bailey JE, Wray LA, Helvie MA. Invasive cancers detected after breast cancer screening yielded a negative result: relationship of mammographic density to tumor prognostic factors. Radiology. 2004;230(1):42–48.
    1. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA, et al. ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. Reston, VA: American College of Radiology; 2013.
    1. Highnam R, Jeffreys M, McCormack V, Warren R, Davey Smith G, Brady M. Comparing measurements of breast density. Phys Med Biol. 2007;52(19):5881–5895.
    1. Berg WA. Supplemental breast cancer screening in women with dense breasts should be offered with simultaneous collection of outcomes data. Ann Intern Med. 2016;164(4):299–300.
    1. Tabar L, Vitak B, Chen HH, Prevost TC, Duffy SW. Update of the Swedish Two-County Trial of breast cancer screening: histologic grade-specific and age-specific results. Swiss Surg. 1999;5(5):199–204.
    1. Screening IUKPoBC The benefits and harms of breast cancer screening: an independent review. Lancet. 2012;380(9855):1778–1786.
    1. van Gils CH, Otten JD, Verbeek AL, Hendriks JH. Mammographic breast density and risk of breast cancer: masking bias or causality? Eur J Epidemiol. 1998;14(4):315–320.
    1. Boyd N, Guo H, Martin L, Sun L, Stone J, Fishell E, Jong R, Hislop G, Chiarelli A, Minkin S, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356:227–236.
    1. Crosier M, Scott D, Wilson RG, Griffiths CD, May FE, Westley BR. Differences in Ki67 and c-erbB2 expression between screen-detected and true interval breast cancers. Clin Cancer Res. 1999;5(10):2682–2688.
    1. Kalager M, Tamimi RM, Bretthauer M, Adami HO. Prognosis in women with interval breast cancer: population based observational cohort study. Br Med J. 2012;345:10.
    1. Eriksson L, Czene K, Rosenberg LU, Tornberg S, Humphreys K, Hall P. Mammographic density and survival in interval breast cancers. Breast Cancer Res. 2013;15(3):7.
    1. Carter CL, Allen C, Henson DE. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer. 1989;63(1):181–187.
    1. Pinto Pereira SM, et al. Localized fibroglandular tissue as a predictor of future tumor location within the breast. Cancer Epidemiol Biomarkers Prev. 2011;20(8):1718–25.
    1. Ursin G, Hovanessian-Larsen L, Parisky YR, Pike MC, Wu AH. Greatly increased occurrence of breast cancers in areas of mammographically dense tissue. Breast Cancer Res. 2005;7(5):R605.
    1. McConnell JC, O’Connell OV, Brennan K, Weiping L, Howe M, Joseph L, Knight D, O'Cualain R, Lim Y, Leek A, et al. Increased peri-ductal collagen micro-organization may contribute to raised mammographic density. Breast Cancer Res. 2016;18(1):5.
    1. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4(1):38.
    1. Gabrielson M, Eriksson M, Hammarström M, Borgquist S, Leifland K, Czene K, Hall P. Cohort profile: the Karolinska mammography project for risk prediction of breast cancer (KARMA) Int J Epidemiol. 2017;46(6):1740–1741g.
    1. Eriksson M, Li J, Leifland K, Czene K, Hall P. A comprehensive tool for measuring mammographic density changes over time. Breast Cancer Res Treat. 2018;169(2):371–379.
    1. Health ECD-Gf, Protection C, Perry N, Puthaar E. European guidelines for quality assurance in breast cancer screening and diagnosis. Luxembourg: Office for Official Publications of the European Communities; 2006.
    1. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–1474.
    1. Holland K, van Gils CH, Mann RM, Karssemeijer N. Quantification of masking risk in screening mammography with volumetric breast density maps. Breast Cancer Res Treat. 2017;162(3):541–548.
    1. Mahmoudzadeh AP, Malkov S, Hinton B, Sprague B, Kerlikowske K, Shepherd J. Do women with low breast density have regionally high breast density? In: International workshop on digital mammography: 2016. Malmö: Springer; 2016. p. 548–53.
    1. Aiello EJ, Buist DSM, Emily W, Porter PL. Association between mammographic breast density and breast cancer tumor characteristics. Cancer Epidemiol Biomark Prev. 2005;14(3):662–668.
    1. Strand F, Humphreys K, Holm J, Eriksson M, Törnberg S, Hall P, Azavedo E, Czene K. Long-term prognostic implications of risk factors associated with tumor size: a case study of women regularly attending screening. Breast Cancer Res. 2018;20(1):31.
    1. Holm J, Humphreys K, Li J, Ploner A, Cheddad A, Eriksson M, Tornberg S, Hall P, Czene K. Risk factors and tumor characteristics of interval cancers by mammographic density. J Clin Oncol. 2015;33(9):1030–1037.
    1. Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, White E. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst. 2000;92(13):1081–1087.
    1. DeFilippis RA, Chang H, Dumont N, Rabban JT, Chen YY, Fontenay GV, Berman HK, Gauthier ML, Zhao J, Hu D, et al. CD36 repression activates a multicellular stromal program shared by high mammographic density and tumor tissues. Cancer Discov. 2012;2(9):826–839.
    1. Woolcott CG, et al. Longitudinal changes in IGF-I and IGFBP-3, and mammographic density among postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2013;22(11):2116–20.
    1. Buist DS, Porter PL, Lehman C, Taplin SH, White E. Factors contributing to mammography failure in women aged 40-49 years. J Natl Cancer Inst. 2004;96(19):1432–1440.
    1. Ferguson DJ, Anderson TJ. Morphological evaluation of cell turnover in relation to the menstrual cycle in the “resting” human breast. Br J Cancer. 1981;44(2):177–181.
    1. Mainprize JG, Alonzo-Proulx O, Jong RA, Yaffe MJ. Quantifying masking in clinical mammograms via local detectability of simulated lesions. Med Phys. 2016;43(3):1249.
    1. Hinton B, Malkov S, Avila J, Fan B, Joe B, Kerlikowske K, Ma L, Mahmoudzadeh A, Shepherd J. A measure of regional mammographic masking based on the CDMAM phantom. In: International workshop on digital mammography: 2016. Malmö: Springer; 2016. p. 525–31.

Source: PubMed

3
Suscribir