Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies

Fumiaki Imamura, Amanda Fretts, Matti Marklund, Andres V Ardisson Korat, Wei-Sin Yang, Maria Lankinen, Waqas Qureshi, Catherine Helmer, Tzu-An Chen, Kerry Wong, Julie K Bassett, Rachel Murphy, Nathan Tintle, Chaoyu Ian Yu, Ingeborg A Brouwer, Kuo-Liong Chien, Alexis C Frazier-Wood, Liana C Del Gobbo, Luc Djoussé, Johanna M Geleijnse, Graham G Giles, Janette de Goede, Vilmundur Gudnason, William S Harris, Allison Hodge, Frank Hu, InterAct Consortium, Albert Koulman, Markku Laakso, Lars Lind, Hung-Ju Lin, Barbara McKnight, Kalina Rajaobelina, Ulf Risérus, Jennifer G Robinson, Cécilia Samieri, David S Siscovick, Sabita S Soedamah-Muthu, Nona Sotoodehnia, Qi Sun, Michael Y Tsai, Matti Uusitupa, Lynne E Wagenknecht, Nick J Wareham, Jason Hy Wu, Renata Micha, Nita G Forouhi, Rozenn N Lemaitre, Dariush Mozaffarian, Fatty Acids and Outcomes Research Consortium (FORCE), Fumiaki Imamura, Amanda Fretts, Matti Marklund, Andres V Ardisson Korat, Wei-Sin Yang, Maria Lankinen, Waqas Qureshi, Catherine Helmer, Tzu-An Chen, Kerry Wong, Julie K Bassett, Rachel Murphy, Nathan Tintle, Chaoyu Ian Yu, Ingeborg A Brouwer, Kuo-Liong Chien, Alexis C Frazier-Wood, Liana C Del Gobbo, Luc Djoussé, Johanna M Geleijnse, Graham G Giles, Janette de Goede, Vilmundur Gudnason, William S Harris, Allison Hodge, Frank Hu, InterAct Consortium, Albert Koulman, Markku Laakso, Lars Lind, Hung-Ju Lin, Barbara McKnight, Kalina Rajaobelina, Ulf Risérus, Jennifer G Robinson, Cécilia Samieri, David S Siscovick, Sabita S Soedamah-Muthu, Nona Sotoodehnia, Qi Sun, Michael Y Tsai, Matti Uusitupa, Lynne E Wagenknecht, Nick J Wareham, Jason Hy Wu, Renata Micha, Nita G Forouhi, Rozenn N Lemaitre, Dariush Mozaffarian, Fatty Acids and Outcomes Research Consortium (FORCE)

Abstract

Background: We aimed to investigate prospective associations of circulating or adipose tissue odd-chain fatty acids 15:0 and 17:0 and trans-palmitoleic acid, t16:1n-7, as potential biomarkers of dairy fat intake, with incident type 2 diabetes (T2D).

Methods and findings: Sixteen prospective cohorts from 12 countries (7 from the United States, 7 from Europe, 1 from Australia, 1 from Taiwan) performed new harmonised individual-level analysis for the prospective associations according to a standardised plan. In total, 63,682 participants with a broad range of baseline ages and BMIs and 15,180 incident cases of T2D over the average of 9 years of follow-up were evaluated. Study-specific results were pooled using inverse-variance-weighted meta-analysis. Prespecified interactions by age, sex, BMI, and race/ethnicity were explored in each cohort and were meta-analysed. Potential heterogeneity by cohort-specific characteristics (regions, lipid compartments used for fatty acid assays) was assessed with metaregression. After adjustment for potential confounders, including measures of adiposity (BMI, waist circumference) and lipogenesis (levels of palmitate, triglycerides), higher levels of 15:0, 17:0, and t16:1n-7 were associated with lower incidence of T2D. In the most adjusted model, the hazard ratio (95% CI) for incident T2D per cohort-specific 10th to 90th percentile range of 15:0 was 0.80 (0.73-0.87); of 17:0, 0.65 (0.59-0.72); of t16:1n7, 0.82 (0.70-0.96); and of their sum, 0.71 (0.63-0.79). In exploratory analyses, similar associations for 15:0, 17:0, and the sum of all three fatty acids were present in both genders but stronger in women than in men (pinteraction < 0.001). Whereas studying associations with biomarkers has several advantages, as limitations, the biomarkers do not distinguish between different food sources of dairy fat (e.g., cheese, yogurt, milk), and residual confounding by unmeasured or imprecisely measured confounders may exist.

Conclusions: In a large meta-analysis that pooled the findings from 16 prospective cohort studies, higher levels of 15:0, 17:0, and t16:1n-7 were associated with a lower risk of T2D.

Conflict of interest statement

I have read the journal’s policy and the authors of this manuscript have the following competing interests: JHYW and RM report research support from Unilever for other projects of the FORCE on other fatty acid biomarkers. RM reports personal fees from the World Bank and Bunge outside the submitted work. IAB reported involvement in a research project partly funded by Unilever. JMG and JdG received funding from Unilever for epidemiological studies of dietary and circulating fatty acids and cardiometabolic disease and for research on assessment of fatty acids. LCdG reported receiving ad hoc consulting fees from the Life Sciences Research Organization. CH reported receiving fees for a conference from Novartis. NGF is an invited member (unpaid) of ILSI-Europe Qualitative Fat Intake Task Force Expert Group on update on health effects of different saturated fats. DM reports research funding from the NIH and the Gates Foundation; personal fees from GOED, DSM, Nutrition Impact, Pollock Communications, Bunge, Indigo Agriculture, Amarin, Acasti Pharma, and America’s Test Kitchen; scientific advisory board, Omada Health, Elysium Health, and DayTwo; and chapter royalties from UpToDate; all outside the submitted work. Patents US8889739 and US9987243 to Tufts University (unlicensed), listing DM as a co-inventor, for use of trans-palmitoleic acid to prevent and treat insulin resistance, type 2 diabetes, and related conditions, as well as reduce metabolic risk factors. SSSM reported receiving an international award and unrestricted grants for meta-analysis work on dairy foods and cardiometabolic diseases from Global and Dutch Dairy Associations. Other authors do not have any conflict of interest to declare. The lead author affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Figures

Fig 1. Proportions of fatty acid biomarkers…
Fig 1. Proportions of fatty acid biomarkers for dairy fat consumption.
Plots represent median (diamond) and ranges of the 10th to 90th percentiles (horizontal bar). See Table 1 for the abbreviations of cohorts. CE, cholesteryl ester; NL, the Netherlands; PL, phospholipid; RBC, red blood cell; t16:1n7, trans-16:1 n-7; US, United States.
Fig 2. Prospective associations of fatty acid…
Fig 2. Prospective associations of fatty acid biomarkers for dairy fat consumption with the risk of developing T2D.
RR and 95% CIs per cohort-specific range from the 10th to 90th percentiles are presented: dots from individual studies and diamonds as summary estimates pooled by inverse-variance–weighted meta-analysis. The sizes of the grey shaded areas represent relative contributions of each cohort to that summary estimate. Cohort-specific association was assessed in multivariable models in each cohort adjusting for sex, age, field site (if appropriate), race, socioeconomic status (education, occupation), smoking status, physical activity, alcohol consumption, family history of diabetes, dyslipidaemia, hypertension, menopausal status (only for women), prevalent coronary heart disease, BMI, and waist circumference. Models without the adiposity measures and models including palmitate (16:0) and triglycerides did not alter the results materially (S1 Fig). See Table 1 for the abbreviations of cohorts. NL, the Netherlands; RR, relative risk; T2D, type 2 diabetes mellitus; US, United States.
Fig 3. Prospective associations of quintile categories…
Fig 3. Prospective associations of quintile categories of fatty acid biomarkers for dairy fat consumption with the risk of developing T2D.
Cohort-specific associations by quintiles were assessed in multivariable models in each cohort and pooled with inverse-variance–weighted meta-analysis. Cohort-specific multivariable adjustment was made. In the first model (open diamond), estimates were adjusted for sex, age, smoking status, alcohol consumption, socioeconomic status, physical activity, dyslipidaemia, hypertension, and menopausal status (only for women). Then, the estimates were further adjusted for BMI (grey diamond) and further adjusted for triglycerides and palmitic acid (16:0) as markers of de novo lipogenesis (black diamond). To compute p-values for a trend across quintiles, each fatty acid was evaluated as an ordinal variable in the most adjusted model. T2D, type 2 diabetes mellitus.

References

    1. Weaver CM. How sound is the science behind the dietary recommendations for dairy? Am J Clin Nutr. 2014;99(5):1217S–1222S. 10.3945/ajcn.113.073007
    1. Lawrence GD. Dietary fats and health: dietary recommendations in the context of scientific evidence. Adv Nutr. 2013;4(3):294–302. 10.3945/an.113.003657
    1. Drouin-Chartier J-P, Côté JA, Labonté M-È, Brassard D, Tessier-Grenier M, Desroches S, et al. Comprehensive Review of the Impact of Dairy Foods and Dairy Fat on Cardiometabolic Risk. Adv Nutr. 2016;7(6):1041–51. 10.3945/an.115.011619
    1. Benatar JR, Sidhu K, Stewart RAH. Effects of High and Low Fat Dairy Food on Cardio-Metabolic Risk Factors: A Meta-Analysis of Randomized Studies. PLoS ONE. 2013;8(10):e76480 10.1371/journal.pone.0076480
    1. Abid Z, Cross AJ, Sinha R. Meat, dairy, and cancer. Am J Clin Nutr. 2014;100 Suppl:386S–93S. 10.3945/ajcn.113.071597
    1. Lu W, Chen H, Niu Y, Wu H, Xia D, Wu Y. Dairy products intake and cancer mortality risk: a meta-analysis of 11 population-based cohort studies. Nutr J. 2016;15(1):91 10.1186/s12937-016-0210-9
    1. Guo J, Astrup A, Lovegrove JA, Gijsbers L, Givens DI, Soedamah-Muthu SS. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: dose–response meta-analysis of prospective cohort studies. Eur J Epidemiol. 2017;93(1):158–71. 10.1007/s10654-017-0243-1
    1. Gijsbers L, Ding EL, Malik VS, de Goede J, Geleijnse JM, Soedamah-Muthu SS. Consumption of dairy foods and diabetes incidence: a dose-response meta-analysis of observational studies. Am J Clin Nutr. 2016;103(4):1111–24. 10.3945/ajcn.115.123216
    1. Hebert JR, Ma Y, Clemow L, Ockene IS, Saperia G, Stanek EJ, et al. Gender Differences in Social Desirability and Social Approval Bias in Dietary Self-report. Am J Epidemiol. 1997;146(12):1046–55. 10.1093/oxfordjournals.aje.a009233
    1. Allen NE, Grace PB, Ginn A, Travis RC, Roddam AW, Appleby PN, et al. Phytanic acid: measurement of plasma concentrations by gas-liquid chromatography-mass spectrometry analysis and associations with diet and other plasma fatty acids. Br J Nutr. 2008;99(3):653–9. 10.1017/S000711450782407X
    1. Risérus U, Marklund M. Milk fat biomarkers and cardiometabolic disease. Current Opin Lipidol. 2017;28(1):46–51. 10.1097/MOL.0000000000000381
    1. Albani V, Celis-Morales C, Marsaux CFM, Forster H, O’Donovan CB, Woolhead C, et al. Exploring the association of dairy product intake with the fatty acids C15:0 and C17:0 measured from dried blood spots in a multipopulation cohort: Findings from the Food4Me study. Mol Nutr Food Res. 2016;60(4):834–45. 10.1002/mnfr.201500483
    1. Yakoob MY, Shi P, Willett WC, Rexrode KM, Campos H, Orav EJ, et al. Circulating Biomarkers of Dairy Fat and Risk of Incident Diabetes Mellitus Among US Men and Women in Two Large Prospective Cohorts. Circulation. 2016;133(17):1645–54.
    1. Mozaffarian D, de Oliveira Otto MC, Lemaitre RN, Fretts AM, Hotamisligil G, Tsai MY, et al. trans-Palmitoleic acid, other dairy fat biomarkers, and incident diabetes: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2013;97(4):854–61. 10.3945/ajcn.112.045468
    1. Micha R, King IB, Lemaitre RN, Rimm EB, Sacks F, Song X, et al. Food sources of individual plasma phospholipid trans fatty acid isomers: the Cardiovascular Health Study. Am J Clin Nutr. 2010;91(4):883–93. 10.3945/ajcn.2009.28877
    1. Wolk A, Furuheim M, Vessby B. Fatty acid composition of adipose tissue and serum lipids are valid biological markers of dairy fat intake in men. J Nutr. 2001;131(3):828–33. 10.1093/jn/131.3.828
    1. Brevik A, Veierød MB, Drevon CA, Andersen LF, Veierod MB, Drevon CA, et al. Evaluation of the odd fatty acids 15:0 and 17:0 in serum and adipose tissue as markers of intake of milk and dairy fat. Eur J Clin Nutr. 2005;59(12):1417–22. 10.1038/sj.ejcn.1602256
    1. Wolk A, Vessby B, Ljung H, Barrefors P. Evaluation of a biological marker of dairy fat intake. Am J Clin Nutr. 1998;68(2):291–5. 10.1093/ajcn/68.2.291
    1. Abdullah MMH, Cyr A, Lépine M-C, Labonté M-È, Couture P, Jones PJH, et al. Recommended dairy product intake modulates circulating fatty acid profile in healthy adults: a multi-centre cross-over study. Br J Nutr. 2015;113(03):435–44. 10.1017/S0007114514003894
    1. Golley RK, Hendrie GA. Evaluation of the Relative Concentration of Serum Fatty Acids C14:0, C15:0 and C17:0 as Markers of Children’s Dairy Fat Intake. Ann Nutr Metab. 2014;65(4):310–6. 10.1159/000368325
    1. Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kröger J, Schulze MB, et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diab Endocrinol. 2014;2(10):810–8. 10.1016/S2213-8587(14)70146-9
    1. Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X, Siscovick DS, et al. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: a cohort study. Ann Intern Med. 2010;153(12):790–9. 10.7326/0003-4819-153-12-201012210-00005
    1. Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK, Wennberg M, et al. ω-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease. JAMA Intern Med. 2016;176(8):1155.
    1. Wu JHY, Marklund M, Imamura F, Tintle N, Ardisson Korat A V, de Goede J, et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. Lancet Diabetes Endocrinol. 2017;5(12):965–74. 10.1016/S2213-8587(17)30307-8
    1. Smith-Warner SA, Spiegelman D, Ritz J, Albanes D, Beeson WL, Bernstein L, et al. Methods for pooling results of epidemiologic studies: the Pooling Project of Prospective Studies of Diet and Cancer. Am J Epidemiol. 2006;163(11):1053–64. 10.1093/aje/kwj127
    1. Rosner B, Hennekens CH, Kass EH, Miall WE. Age-specific correlation analysis of longitudinal blood pressure data. Am J Epidemiol. 1977;106(4):306–13. 10.1093/oxfordjournals.aje.a112466
    1. Hodge AM, English DR, O’Dea K, Sinclair AJ, Makrides M, Gibson RA, et al. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr. 2007;86(1):189–97. 10.1093/ajcn/86.1.189
    1. Kromhout D, Giltay EJ, Geleijnse JM, Alpha Omega Trial Group. n-3 fatty acids and cardiovascular events after myocardial infarction. The New England journal of medicine. 2010;363(21):2015–26. 10.1056/NEJMoa1003603
    1. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. 10.1002/sim.1186
    1. Katan MB, Deslypere JP, van Birgelen AP, Penders M, Zegwaard M. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res. 1997;38(10):2012–22.
    1. Wang DH, Jackson JR, Twining C, Rudstam LG, Zollweg-Horan E, Kraft C, et al. Saturated Branched Chain, Normal Odd-Carbon-Numbered, and n-3 (Omega-3) Polyunsaturated Fatty Acids in Freshwater Fish in the Northeastern United States. J Agric Food Chem. 2016; 10.1021/acs.jafc.6b03491
    1. Ratnayake WN. Concerns about the use of 15:0, 17:0, and trans-16:1n-7 as biomarkers of dairy fat intake in recent observational studies that suggest beneficial effects of dairy food on incidence of diabetes and stroke. Am J Clin Nutr. 2015;101(5):1102–3. 10.3945/ajcn.114.105379
    1. Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Willett WC, et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011;94(4):1088–96. 10.3945/ajcn.111.018978
    1. Wu JHY, Micha R, Imamura F, Pan A, Biggs ML, Ajaz O, et al. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br J Nutr. 2012;107 Suppl:S214–27. 10.1017/S0007114512001602
    1. Weitkunat K, Schumann S, Nickel D, Hornemann S, Petzke KJ, Schulze MB, et al. Odd-chain fatty acids as a biomarker for dietary fiber intake: a novel pathway for endogenous production from propionate. Am J Clin Nutr. 2017;105(6):1544–51. 10.3945/ajcn.117.152702
    1. Pfeuffer M, Jaudszus A. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids. Adv Nutr. 2016;7(4):730–4. 10.3945/an.115.011387
    1. EFSA Panel on Food additives and Nutrient Sources added to Food. Scientific Opinion on the re-evaluation of propionic acid (E 280), sodium propionate (E 281), calcium propionate (E 282) and potassium propionate (E 283) as food additives. EFSA J. 2014;12(7):3779 10.2903/j.efsa.2014.3779
    1. Jenkins BJ, Seyssel K, Chiu S, Pan P-H, Lin S-Y, Stanley E, et al. Odd Chain Fatty Acids; New Insights of the Relationship Between the Gut Microbiota, Dietary Intake, Biosynthesis and Glucose Intolerance. Scientific Reports. 2017;7:44845 10.1038/srep44845
    1. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134(6):933–44. 10.1016/j.cell.2008.07.048
    1. Mozaffarian D, Wu JHY. Flavonoids, Dairy Foods, and Cardiovascular and Metabolic Health. Circulation Res. 2018;122(2):369–84. 10.1161/CIRCRESAHA.117.309008
    1. Simental-Mendía LE, Sahebkar A, Rodríguez-Morán M, Guerrero-Romero F. A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol Res. 2016;111:272–82. 10.1016/j.phrs.2016.06.019
    1. Hartmann S, Lacorn M, Steinhart H. Natural occurrence of steroid hormones in food. Food Chemistry. 1998;62(1):7–20. 10.1016/S0308-8146(97)00150-7
    1. Vicini J, Etherton T, Kris-Etherton P, Ballam J, Denham S, Staub R, et al. Survey of retail milk composition as affected by label claims regarding farm-management practices. J Am Diet Assoc. 2008;108(7):1198–203. 10.1016/j.jada.2008.04.021
    1. Margolis KL, Bonds DE, Rodabough RJ, Tinker L, Phillips LS, Allen C, et al. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women’s Health Initiative Hormone Trial. Diabetologia. 2004;47(7):1175–87. 10.1007/s00125-004-1448-x
    1. Kanaya AM, Herrington D, Vittinghoff E, Lin F, Grady D, Bittner V, et al. Glycemic effects of postmenopausal hormone therapy: the Heart and Estrogen/progestin Replacement Study. A randomized, double-blind, placebo-controlled trial. Ann Int Med. 2003;138(1):1–9.
    1. Sun J, Buys NJ. Glucose- and glycaemic factor-lowering effects of probiotics on diabetes: a meta-analysis of randomised placebo-controlled trials. Br J Nutr. 2016;115(07):1167–77. 10.1017/S0007114516000076
    1. Sluijs I, Forouhi NG, Beulens JWJ, van der Schouw YT, Agnoli C, Arriola L, et al. The amount and type of dairy product intake and incident type 2 diabetes: results from the EPIC-InterAct Study. Am J Clin Nutr. 2012;96(2):382–90. 10.3945/ajcn.111.021907
    1. de Boer IH, Tinker LF, Connelly S, Curb JD, Howard BV, Kestenbaum B, et al. Calcium plus vitamin D supplementation and the risk of incident diabetes in the Women’s Health Initiative. Diabetes Care. 2008;31(4):701–7. 10.2337/dc07-1829
    1. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014;10(12):723–36. 10.1038/nrendo.2014.171
    1. Sluijs I, Beulens JWJ, van der A DL, Spijkerman AMW, Grobbee DE, van der Schouw YT. Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care. 2010;33(1):43–8. 10.2337/dc09-1321
    1. Ding EL, Song Y, Malik VS, Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2006;295(11):1288–99. 10.1001/jama.295.11.1288
    1. Smith JD, Hou T, Ludwig DS, Rimm EB, Willett W, Hu FB, et al. Changes in intake of protein foods, carbohydrate amount and quality, and long-term weight change: results from 3 prospective cohorts. Am J Clin Nutr. 2015;101(6):1216–24. 10.3945/ajcn.114.100867
    1. Saadatian-Elahi M, Slimani N, Chajès V, Jenab M, Goudable J, Biessy C, et al. Plasma phospholipid fatty acid profiles and their association with food intakes: results from a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr. 2009;89(1):331–46. 10.3945/ajcn.2008.26834

Source: PubMed

3
Suscribir