Self-Regulation in Children with Neurodevelopmental Disorders "SR-MRehab: Un Colegio Emocionante": A Protocol Study

Dulce Romero-Ayuso, Pablo Alcántara-Vázquez, Ana Almenara-García, Irene Nuñez-Camarero, José Matías Triviño-Juárez, Patrocinio Ariza-Vega, José-Pascual Molina, Pascual González, Dulce Romero-Ayuso, Pablo Alcántara-Vázquez, Ana Almenara-García, Irene Nuñez-Camarero, José Matías Triviño-Juárez, Patrocinio Ariza-Vega, José-Pascual Molina, Pascual González

Abstract

Self-regulation refers to the ability to control and modulate behavior, and it can include both emotional and cognitive modulation. Children with neurodevelopmental disorders may show difficulties in self-regulation. The main objective of this study is to improve self-regulation skills in children between 6 and 11 years of age with neurodevelopmental disorders. Methodology: A randomized controlled trial will be conducted with the use of "SR-MRehab: Un colegio emocionante", based on a non-immersive virtual reality system where virtual objects can be managed by children in a natural way using their hands. Children will be recruited from several schools of Granada (Spain) and they will be randomly allocated to two groups. An assessment will be conducted before and after the intervention and 24 weeks after the end of the intervention process. The experimental group will receive the intervention using virtual reality. The control group will receive a standard self-regulation program. Both interventions will be performed once a week for a total of 10 sessions. Changes in self-regulation, as well as the acceptability of technology with the use of SR-MRehab, will be evaluated. The results will be published and will provide evidence regarding the use of this type of intervention in children with neurodevelopmental disorders. Trial registration: Registered with code NCT04418921.

Keywords: ADHD; ASD; children; emotional regulation; executive functions; virtual reality.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Recruitment and study procedure.
Figure 2
Figure 2
Example of tasks with “SR-MRehab: Un colegio emocionante”: (ac) Emotional Perception, (d,e) Emotional Regulation; (f) Cognitive Regulation: inhibitory control; and (g,h) Cognitive Regulation: Reasoning and problem solving.

References

    1. Villani D., Carissoli C., Triberti S., Marchetti A., Gilli G., Riva G. Videogames for Emotion Regulation: A Systematic Review. Games Health J. 2018;7:85–99. doi: 10.1089/g4h.2017.0108.
    1. Flores-Lázaro J., Castillo-Preciado R., Jiménez-Miramonte N. Desarrollo de funciones ejecutivas, de la niñez a la juventud. Anales De Psicología. 2014;30:463–473.
    1. Anastopoulos A.D., Smith T.F., Garrett M.E., Morrissey-Kane E., Schatz N.K., Sommer J.L., Kollins S.H., Ashley-Koch A. Self-Regulation of Emotion, Functional Impairment, and Comorbidity Among ChildrenWith AD/HD. J. Atten. Disord. 2011;15:583–592. doi: 10.1177/1087054710370567.
    1. Reyes N.M., Pickard K., Reaven J. Emotion regulation: A treatment target for autism spectrum disorder. Bull. Menn. Clin. 2019;83:205–234. doi: 10.1521/bumc.2019.83.3.205.
    1. Bisquerra Alzina R., Mateo Andrés J. Competencias Emocionales Para Un Cambio De Paradigma En Educaciã³N. Horsori; Barcelona, Spain: 2019. p. 242.
    1. Cai R.Y., Richdale A.L., Dissanayake C., Uljarević M. How Does Emotion Regulation Strategy Use and Psychological Wellbeing Predict Mood in Adults With and Without Autism Spectrum Disorder? A Naturalistic Assessment. J. Autism. Dev. Disord. 2019;50:1–4. doi: 10.1007/s10803-019-03934-0.
    1. Garland T. Keeping the Body, Mind & Emotions on Task in Children with Autism, ADHD or Sensory Disorders. PESI Publising & Media; Eau Claire, WI, USA: 2014. Self-Regulation Interventions and Strategies.
    1. Waddington F., Hartman C., de Bruijn Y., Lappenschaar M., Oerlemans A., Buitelaar J., Franke B., Lambregts-Rommelse N.N.J. An emotion recognition subtyping approach to studying the heterogeneity and comorbidity of autism spectrum disorders and attention-deficit/hyperactivity disorder. J. Neurodev. Disord. 2018;10:31. doi: 10.1186/s11689-018-9249-6.
    1. Moessnang C., Baumeister S., Tillmann J., Goyard D., Charman T., Ambrosino S., Baron-Cohen S., Beckmann C., Bölte S., Bours C., et al. Social brain activation during mentalizing in a large autism cohort: The Longitudinal European Autism Project. Mol. Autism. 2020;11:17. doi: 10.1186/s13229-020-0317-x.
    1. Seng G.J., Tseng W.L., Chiu Y.N., Tsai W.C., Wu Y.Y., Gau S.S. Executive functions in youths with autism spectrum disorder and their unaffected siblings. Psychol. Med. 2020 doi: 10.1017/S0033291720001075.
    1. Trimarco B., Manti F., Nardecchia F., Melogno S., Testa M., Meledandri G., Carducci C., Penge R., Leuzzi V. Executive functioning, adaptive skills, emotional and behavioral profile: A comparison between autism spectrum disorder and phenylketonuria. Mol. Genet. Metab. Rep. 2020;23:100577. doi: 10.1016/j.ymgmr.2020.100577.
    1. Barkley R.A. Attention-deficit/hyperactivity disorder, self-regulation, and time: Toward a more comprehensive theory. J. Dev. Behav. Pediatr. 1997;18:271–279. doi: 10.1097/00004703-199708000-00009.
    1. Barkley R.A., Edwards G., Laneri M., Fletcher K., Metevia L. Executive functioning, temporal discounting, and sense of time in adolescents with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) J. Abnorm. Child. Psychol. 2001;29:541–556. doi: 10.1023/A:1012233310098.
    1. Predescu E., Sipos R., Costescu C.A., Ciocan A., Rus D.I. Executive Functions and Emotion Regulation in Attention-Deficit/Hyperactivity Disorder and Borderline Intellectual Disability. J. Clin. Med. 2020;9:986. doi: 10.3390/jcm9040986.
    1. Diamond A. Executive functions. Annu. Rev. Psychol. 2013;64:135–168. doi: 10.1146/annurev-psych-113011-143750.
    1. Sonuga-Barke E.J. Causal models of attention-deficit/hyperactivity disorder: From common simple deficits to multiple developmental pathways. Biol. Psychiatry. 2005;57:1231–1238. doi: 10.1016/j.biopsych.2004.09.008.
    1. Van Cauwenberge V., Sonuga-Barke E.J., Hoppenbrouwers K., Van Leeuwen K., Wiersema J.R. Turning down the heat: Is poor performance of children with ADHD on tasks tapping “hot” emotional regulation caused by deficits in “cool” executive functions? Res. Dev. Disabil. 2015;47:199–207. doi: 10.1016/j.ridd.2015.09.012.
    1. Navarro E., González P., López-Jaquero V., Montero F., Molina J.P., Romero-Ayuso D. Adaptive, Multisensorial, Physiological and Social: The Next Generation of Telerehabilitation Systems. Front. Neuroinform. 2018;12:43. doi: 10.3389/fninf.2018.00043.
    1. Radovic A., Badawy S.M. Technology Use for Adolescent Health and Wellness. Pediatrics. 2020;145(Suppl. S2):S186–S194. doi: 10.1542/peds.2019-2056G.
    1. Rizzo A., Buckwalter J.G., John B., Newman B., Parsons T., Kenny P., Williams J. STRIVE: Stress Resilience In Virtual Environments: A pre-deployment VR system for training emotional coping skills and assessing chronic and acute stress responses. Stud. Health Technol. Inform. 2012;173:379–385.
    1. Parsons T.D., Bowerly T., Buckwalter J.G., Rizzo A.A. A controlled clinical comparison of attention performance in children with ADHD in a virtual reality classroom compared to standard neuropsychological methods. Child. Neuropsychol. 2007;13:363–381. doi: 10.1080/13825580600943473.
    1. Parsons T.D. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences. Front. Hum. Neurosci. 2015;9:660. doi: 10.3389/fnhum.2015.00660.
    1. Bashiri A., Ghazisaeedi M., Shahmoradi L. The opportunities of virtual reality in the rehabilitation of children with attention deficit hyperactivity disorder: A literature review. Korean J. Pediatr. 2017;60:337–343. doi: 10.3345/kjp.2017.60.11.337.
    1. Mesa-Gresa P., Gil-Gómez H., Lozano-Quilis J.A., Gil-Gómez J.A. Effectiveness of Virtual Reality for Children and Adolescents with Autism Spectrum Disorder: An Evidence-Based Systematic Review. Sensors. 2018;18:2486. doi: 10.3390/s18082486.
    1. Parsons T.D., Riva G., Parsons S., Mantovani F., Newbutt N., Lin L., Venturini E., Hall T. Virtual Reality in Pediatric Psychology. Pediatrics. 2017;140(Suppl. S2):S86–S91. doi: 10.1542/peds.2016-1758I.
    1. Voss C., Schwartz J., Daniels J., Kline A., Haber N., Washington P., Tariq Q., Robinson T.N., Desai M., Phillips J.M., et al. Effect of Wearable Digital Intervention for Improving Socialization in Children With Autism Spectrum Disorder: A Randomized Clinical Trial. JAMA Pediatr. 2019;173:446–454. doi: 10.1001/jamapediatrics.2019.0285.
    1. Bekele E., Zheng Z., Swanson A., Crittendon J., Warren Z., Sarkar N. Understanding how adolescents with autism respond to facial expressions in virtual reality environments. IEEE Trans. Vis. Comput. Graph. 2013;19:711–720. doi: 10.1109/TVCG.2013.42.
    1. Bekele E., Crittendon J., Zheng Z., Swanson A., Weitlauf A., Warren Z., Sarkar N. Assessing the utility of a virtual environment for enhancing facial affect recognition in adolescents with autism. J. Autism. Dev. Disord. 2014;44:1641–1650. doi: 10.1007/s10803-014-2035-8.
    1. Yuan S.N.V., Ip H.H.S. Using virtual reality to train emotional and social skills in children with autism spectrum disorder. Lond. J. Prim. Care (Abingdon) 2018;10:110–112. doi: 10.1080/17571472.2018.1483000.
    1. Alcañiz M., Chicchi Giglioli I.A., Sirera M., Minissi E., Abad L. Autism spectrum disorder biomarkers based on biosignals, virtual reality and artificial intelligence. Medicina (B Aires) 2020;80(Suppl. S2):31–36.
    1. Shema-Shiratzky S., Brozgol M., Cornejo-Thumm P., Geva-Dayan K., Rotstein M., Leitner Y., Hausdroff J.M., Mirelaman A. Virtual reality training to enhance behavior and cognitive function among children with attention-deficit/hyperactivity disorder: Brief report. Dev. Neurorehabil. 2019;22:431–436. doi: 10.1080/17518423.2018.1476602.
    1. Blume F., Hudak J., Dresler T., Ehlis A.C., Kühnhausen J., Renner T.J., Gawrilow C. NIRS-based neurofeedback training in a virtual reality classroom for children with attention-deficit/hyperactivity disorder: Study protocol for a randomized controlled trial. Trials. 2017;18:41. doi: 10.1186/s13063-016-1769-3.
    1. Eom H., Kim K.K., Lee S., Hong Y.J., Heo J., Kim J.J., Kim E. Development of Virtual Reality Continuous Performance Test Utilizing Social Cues for Children and Adolescents with Attention-Deficit/Hyperactivity Disorder. Cyberpsychol. Behav. Soc. Netw. 2019;22:198–204. doi: 10.1089/cyber.2018.0377.
    1. Areces D., Dockrell J., García T., González-Castro P., Rodríguez C. Analysis of cognitive and attentional profiles in children with and without ADHD using an innovative virtual reality tool. PLoS ONE. 2018;13:e0201039. doi: 10.1371/journal.pone.0201039.
    1. Neguț A., Jurma A.M., David D. Virtual-reality-based attention assessment of ADHD: ClinicaVR: Classroom-CPT versus a traditional continuous performance test. Child. Neuropsychol. 2017;23:692–712. doi: 10.1080/09297049.2016.1186617.
    1. Vahabzadeh A., Keshav N.U., Abdus-Sabur R., Huey K., Liu R., Sahin N.T. Improved Socio-Emotional and Behavioral Functioning in Students with Autism Following School-Based Smartglasses Intervention: Multi-Stage Feasibility and Controlled Efficacy Study. Behav. Sci. 2018;8:85. doi: 10.3390/bs8100085.
    1. Keshav N.U., Vogt-Lowell K., Vahabzadeh A., Sahin N.T. Digital Attention-Related Augmented-Reality Game: Significant Correlation between Student Game Performance and Validated Clinical Measures of Attention-Deficit/Hyperactivity Disorder (ADHD) Children. 2019;6:72. doi: 10.3390/children6060072.
    1. Newbutt N., Bradley R., Conley I. Using Virtual Reality Head-Mounted Displays in Schools with Autistic Children: Views, Experiences, and Future Directions. Cyberpsychol. Behav. Soc. Netw. 2020;23:23–33. doi: 10.1089/cyber.2019.0206.
    1. Fernández M.A., Morillo M.D., Gilibert N., Carvalho C., Bello S. The technological tools of the diagnosis and treatment of attention deficit disorder and hyperactivity. Medicina (B Aires) 2020;80(Suppl. S2):67–71.
    1. Oliver M., Teruel M.A., Molina J.P., Romero-Ayuso D., González P. Ambient Intelligence Environment for Home Cognitive Telerehabilitation. Sensors. 2018;18:3671. doi: 10.3390/s18113671.
    1. Oliver M., González P., Montero F., Molina J.P., Fernández-Caballero A. Advances in Intelligent Systems and Computing. Springer International Publishing; New York, NY, USA: 2016. Smart Computer-Assisted Cognitive Rehabilitation for the Ageing Population; pp. 197–205.
    1. Esnaola I., Freeman J., Sarasa M., Fernández-Zabala A., Axpe I. Validity Evidence based on Internal Structure of Scores of the Emotional Quotient-Inventory: Youth Version Short (EQ-i: YV-S) in a Spanish Sample. Span. J. Psychol. 2016;19:E12. doi: 10.1017/sjp.2016.12.
    1. Barron-Linnankoski S., Reinvall O., Lahervuori A., Voutilainen A., Lahti-Nuuttila P., Korkman M. Neurocognitive performance of children with higher functioning autism spectrum disorders on the NEPSY-II. Child. Neuropsychol. 2015;21:55–77. doi: 10.1080/09297049.2013.873781.
    1. Baron I.S. Neuropsychological Evaluation of the Child. Oxford University Press; Oxford, UK: 2004.
    1. Romero-Ayuso D., Toledano-González A., Segura-Fragoso A., Treviño-Juárez J., Rodríguez-Martínez M. Assessment of Sensor Processing and Executive Functions at the School: Development, Reliability and Validity of EPYFEI-Escolar. Front. Pediatr. 2020;8:275. doi: 10.3389/fped.2020.00275.
    1. Romero-Ayuso D., Jorquera-Cabrera S., Segura-Fragoso A., Toledano-González A., Rodríguez-Martínez M.C., Triviño-Juárez J.M. Assessment of Sensory Processing and Executive Functions in Childhood: Development, Reliability, and Validity of the EPYFEI. Front. Pediatr. 2018;6:71. doi: 10.3389/fped.2018.00071.
    1. Sim G., Horton M. Investigating Children’s Opinions of Games: Fun Toolkit vs This or That; In Proceeding of the 11th International Conference on Interaction Design and Children; Bremen, Germany. 12–15 June 2012; New York, NY, USA: Association for Computing Machinery; 2012.
    1. Bisquerra R. Educación emocional y competencias básicas para la vida. Rev. Investig. Educ. 2003;21:7–43.
    1. Martos-Pérez J., Llorente-Comí M., González-NAvarro A., Ayuda-Pascual R., Freire S. Los Niños Pequeños Con AUTISMO. CEPE; Madrid, Spain: 2014.
    1. Bisquerra Alzina R. Actividades para el desarrollo de la inteligencia emocional en los niños. Parramón; Barcelona, Spain: 2009. Universidad de Barcelona. Grup de Recerca en Orientació Psicopedagògica; p. 192.
    1. Birnie K.A., Kulandaivelu Y., Jibb L., Hroch P., Positano K., Robertson S., Campbell F., Abla O., Stinson J. Usability Testing of an Interactive Virtual Reality Distraction Intervention to Reduce Procedural Pain in Children and Adolescents With Cancer [Formula: See text] J. Pediatr. Oncol. Nurs. 2018;35:406–416. doi: 10.1177/1043454218782138.
    1. Chan E., Hovenden M., Ramage E., Ling N., Pham J.H., Rahim A., Lam C., Liu L., Foster S., Sambell R., et al. Virtual Reality for Pediatric Needle Procedural Pain: Two Randomized Clinical Trials. J. Pediatr. 2019;209:160–167.e4. doi: 10.1016/j.jpeds.2019.02.034.
    1. Eijlers R., Utens E.M.W.J., Staals L.M., de Nijs P.F.A., Berghmans J.M., Wijnen R.M.H., Hillegers M.H.J., Dierckx B., Legerstee J.S. Systematic Review and Meta-analysis of Virtual Reality in Pediatrics: Effects on Pain and Anxiety. Anesth. Analg. 2019;129:1344–1353. doi: 10.1213/ANE.0000000000004165.
    1. Bortone I., Leonardis D., Mastronicola N., Crecchi A., Bonfiglio L., Procopio C., Solazzi M., Frisoli A. Wearable Haptics and Immersive Virtual Reality Rehabilitation Training in Children With Neuromotor Impairments. IEEE Trans. Neural Syst. Rehabil. Eng. 2018;26:1469–1478. doi: 10.1109/TNSRE.2018.2846814.
    1. Cho C., Hwang W., Hwang S., Chung Y. Treadmill Training with Virtual Reality Improves Gait, Balance, and Muscle Strength in Children with Cerebral Palsy. Tohoku J. Exp. Med. 2016;238:213–218. doi: 10.1620/tjem.238.213.
    1. Bioulac S., de Sevin E., Sagaspe P., Claret A., Philip P., Micoulaud-Franchi J.A., Bouvard M.P. What do virtual reality tools bring to child and adolescent psychiatry? Encephale. 2018;44:280–285. doi: 10.1016/j.encep.2017.06.005.
    1. Ashburner J., Ziviani J., Rodger S. Sensory processing and classroom emotional, behavioral, and educational outcomes in children with autism spectrum disorder. Am. J. Occup. Ther. 2008;62:564–573. doi: 10.5014/ajot.62.5.564.
    1. Chang Y.S., Owen J.P., Desai S.S., Hill S.S., Arnett A.B., Harris J., Marco E.J. Autism and sensory processing disorders: Shared white matter disruption in sensory pathways but divergent connectivity in social-emotional pathways. PLoS ONE. 2014;9:e103038. doi: 10.1371/journal.pone.0103038.
    1. APA . Diagnostic and Statistical Manual of Mental Disorders: DSM-5. 5th ed. American Psychiatric Association; Arlington, VA, USA: 2013. p. 947.

Source: PubMed

3
Suscribir