Evaluation of muscle strength and motor abilities in children with type II and III spinal muscle atrophy treated with valproic acid

Illora A Darbar, Paulo G Plaggert, Maria Bernadete D Resende, Edmar Zanoteli, Umbertina C Reed, Illora A Darbar, Paulo G Plaggert, Maria Bernadete D Resende, Edmar Zanoteli, Umbertina C Reed

Abstract

Background: Spinal muscular atrophy (SMA) is an autosomal recessive disorder that affects the motoneurons of the spinal anterior horn, resulting in hypotonia and muscle weakness. The disease is caused by deletion or mutation in the telomeric copy of SMN gene (SMN1) and clinical severity is in part determined by the copy number of the centromeric copy of the SMN gene (SMN2). The SMN2 mRNA lacks exon 7, resulting in a production of lower amounts of the full-length SMN protein. Knowledge of the molecular mechanism of diseases has led to the discovery of drugs capable of increasing SMN protein level through activation of SMN2 gene. One of these drugs is the valproic acid (VPA), a histone deacetylase inhibitor.

Methods: Twenty-two patients with type II and III SMA, aged between 2 and 18 years, were treated with VPA and were evaluated five times during a one-year period using the Manual Muscle Test (Medical Research Council scale-MRC), the Hammersmith Functional Motor Scale (HFMS), and the Barthel Index.

Results: After 12 months of therapy, the patients did not gain muscle strength. The group of children with SMA type II presented a significant gain in HFMS scores during the treatment. This improvement was not observed in the group of type III patients. The analysis of the HFMS scores during the treatment period in the groups of patients younger and older than 6 years of age did not show any significant result. There was an improvement of the daily activities at the end of the VPA treatment period.

Conclusion: Treatment of SMA patients with VPA may be a potential alternative to alleviate the progression of the disease.

Trial registration: ClinicalTrials.gov: NCT01033331.

References

    1. Mostacciuolo ML, Danieli GA, Trevisan C, Muller E, Angelini C. Epidemiology of spinal muscular atrophies in a sample of the Italian population. Neuroepidemiology. 1992;11:34–38. doi: 10.1159/000110905.
    1. Thieme A, Mitulla B, Friedemann S, Spiegler AW. Epidemiological data on Werdnig-Hoffmann disease in Germany (West-Thuringen) Hum Genet. 1993;91:295–297. doi: 10.1007/BF00218278.
    1. Munsat TL. Workshop report: International SMA Collaboration. Neuromuscul Disord. 1991;1:81–83. doi: 10.1016/0960-8966(91)90052-T.
    1. Zerres K, Schoneborn S, Forrest E, Lusakowska A, Borkowska J, Petrusewicz I. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci. 1997;146:67–72. doi: 10.1016/S0022-510X(96)00284-5.
    1. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80:155–165. doi: 10.1016/0092-8674(95)90460-3.
    1. Parsons DW, McAndrew PE, Iannaccone ST, Mendell JR, Burghes AH, Prior TW. Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am J Hum Genet. 1998;63:1712–1723. doi: 10.1086/302160.
    1. Velasco E, Valero C, Valero A, Moreno F, Hernandez-Chico C. Molecular analysis of the SMN and NAIP genes in Spanish spinal muscular atrophy (SMA) families and correlation between number of copies of cBCD541 and SMA phenotype. Hum Mol Genet. 1996;5:257–263. doi: 10.1093/hmg/5.2.257.
    1. McAndrew PE, Parsons DW, Simard LR, Rochette C, Ray PN, Mendell JR, Prior TW, Burghes AH. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet. 1997;60:1411–1422. doi: 10.1086/515465.
    1. Prior TW, Swoboda KJ, Scott HD, Hejmanowski AQ. Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. Am J Med Genet A. 2004;130:307–310. doi: 10.1002/ajmg.a.30251.
    1. Wirth B, Brichta L, Schrank B, Lochmüller H, Blick S, Baasner A, Heller R. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet. 2006;119:422–428. doi: 10.1007/s00439-006-0156-7.
    1. Swoboda KJ, Prior TW, Scott CB, McNaught TP, Wride MC, Reyna SP, Bromberg MB. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann Neurol. 2005;57:704–712. doi: 10.1002/ana.20473.
    1. Kernochan LE, Russo ML, Woodling NS, Huynh TN, Avila AM, Fischbeck KH, Sumner CJ. The role of histone acetylation in SMN gene expression. Hum Mol Genet. 2005;14:1171–1182. doi: 10.1093/hmg/ddi130.
    1. Brichta L, Hofmann Y, Hahnen E, Siebzehnrubl FA, Raschke H, Blumcke I, Eyupoglu IY, Wirth B. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet. 2003;12:2481–2489. doi: 10.1093/hmg/ddg256.
    1. Sumner C, Huynh T, Markowitz J, Perhac JS, Hill B, Coovert DD, Schussler K, Chen X, Jarecki J, Burghes AH, Taylor JP, Fischbeck KH. Valproic acid Increases SMN levels in spinal muscular atrophy patients cells. Ann Neurol. 2003;54:647–654. doi: 10.1002/ana.10743.
    1. Andreassi C, Angelozzi C, Tiziano FD, Vitali T, De Vincenzi E, Boninsegna A, Villanova M, Bertini E, Pini A, Neri G, Brahe C. Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet. 2004;12:59–65. doi: 10.1038/sj.ejhg.5201102.
    1. Tsai LK, Tsai MS, Ting CH, Li H. Multiple therapeutic effects of valproic acid in spinal muscular atrophy model mice. J Mol Med. 2008;86:1243–1254. doi: 10.1007/s00109-008-0388-1.
    1. Brichta L, Holker I, Haug K, Klockgether T, Wirth B. In vivo activation of SMN in spinal muscular atrophy carriers and patients treated with valproate. Ann Neurol. 2006;59:970–975. doi: 10.1002/ana.20836.
    1. Weihl CC, Connolly AM, Pestronk A. Valproate may improve strength and function in patients with type III/IV spinal muscle atrophy. Neurology. 2006;67:500–501. doi: 10.1212/01.wnl.0000231139.26253.d0.
    1. Tsai LK, Yang CC, Hwu WL, Li H. Valproic acid treatment in six patients with spinal muscular atrophy. Eur J Neurol. 2007;14:e8–e9. doi: 10.1111/j.1468-1331.2007.01992.x.
    1. Swoboda KJ, Scott CB, Reyna SP, Prior TW, LaSalle B, Sorenson SL, Wood J, Acsadi G, Crawford TO, Kissel JT, Krosschell KJ, D'Anjou G, Bromberg MB, Schroth MK, Chan GM, Elsheikh B, Simard LR. Phase II open label study of valproic acid in spinal muscular atrophy. PLoS One. 2009;4:e5268. doi: 10.1371/journal.pone.0005268.
    1. Swoboda KJ, Scott CB, Crawford TO, Simard LR, Reyna SP, Krosschell KJ, Acsadi G, Elsheik B, Schroth MK, D'Anjou G, LaSalle B, Prior TW, Sorenson SL, Maczulski JA, Bromberg MB, Chan GM, Kissel JT. Project Cure Spinal Muscular Atrophy Investigators Network. SMA Carni-val trial part I: Double-blind, randomized, placebo-controlled trial of L-carnitine and valproid acid in spinal muscular atrophy. PLos one. 2010;5:e12140. doi: 10.1371/journal.pone.0012140.
    1. Zanoteli E, Maximino JR, Reed UC, Chadi G. Spinal muscular atrophy: from animal model to clinical trial. Funct Neurol. 2010;25:73–79.
    1. Main M, Kairon H, Mercuri E, Muntoni F. The Hammersmith Functional Motor Scale for Children with spinal muscular atrophy: a scale to test ability and monitor progress in children with limited ambulation. Eur J Paediatric Neurol. 2003;7:155–159. doi: 10.1016/S1090-3798(03)00060-6.
    1. Scott OM, Hyde SA, Goddard C, Dubowitz V. Quantitation of muscle function in children: a prospective study in Duchenne muscular dystrophy. Muscle Nerve. 1982;5:291–301. doi: 10.1002/mus.880050405.
    1. Cid-Ruzafa J, Damian-Moreno J. Valoración de la discapacidad física: el índice de Barthel. Rev Esp Salud Pública. 1997;71:127–137.
    1. Swoboda K, Kissel J, Crawford T, Bromberg MB, Acsadi G, Danjou G, Krosschell KJ, Reyna SP, Schroth MK, Scott CB, Simard LR. Perspectives on clinical trials in spinal muscular atrophy. J Child Neurol. 2007;22:957–966. doi: 10.1177/0883073807305665.
    1. Silva MF, Aires CC, Luis PB. Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation. A review J Inherit Metabol Dis. 2008;31:205–216. doi: 10.1007/s10545-008-0841-x.
    1. Chan YC, Tse ML, Lau FL. Two cases of valproic acid poisoning treated with L-carnitine. Hum Exp Toxicol. 2007;26:967–969. doi: 10.1177/0960327107087799.
    1. Lheureux PE, Hantson P. Carnitine in the treatment of valproic acid-induced toxicity. Clin Toxicol (Phila) 2009;47:101–111.
    1. Anil M, Helvaci M, Ozbal E, Kalenderer O, Anil AB, Dilek M. Serum and muscle carnitine levels in epileptic children receiving sodium valproate. J Child Neurol. 2009;24:80–86. doi: 10.1177/0883073808321060.

Source: PubMed

3
Suscribir