5-Hydroxytryptophan (5-HTP): Natural Occurrence, Analysis, Biosynthesis, Biotechnology, Physiology and Toxicology

Massimo E Maffei, Massimo E Maffei

Abstract

L-5-hydroxytryptophan (5-HTP) is both a drug and a natural component of some dietary supplements. 5-HTP is produced from tryptophan by tryptophan hydroxylase (TPH), which is present in two isoforms (TPH1 and TPH2). Decarboxylation of 5-HTP yields serotonin (5-hydroxytryptamine, 5-HT) that is further transformed to melatonin (N-acetyl-5-methoxytryptamine). 5-HTP plays a major role both in neurologic and metabolic diseases and its synthesis from tryptophan represents the limiting step in serotonin and melatonin biosynthesis. In this review, after an look at the main natural sources of 5-HTP, the chemical analysis and synthesis, biosynthesis and microbial production of 5-HTP by molecular engineering will be described. The physiological effects of 5-HTP are discussed in both animal studies and human clinical trials. The physiological role of 5-HTP in the treatment of depression, anxiety, panic, sleep disorders, obesity, myoclonus and serotonin syndrome are also discussed. 5-HTP toxicity and the occurrence of toxic impurities present in tryptophan and 5-HTP preparations are also discussed.

Keywords: 5-hydroxytryptophan; animal; biosynthetic pathways; human; microbial production; natural sources; physiological effects.

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
Chemical synthesis of 5-hydroxytryptophan (5-HTP). From [54], modified.
Figure 2
Figure 2
Hydroxylation of tryptophan by tryptophan hydroxylase (TPH). See text for explanation. From [58], modified.
Figure 3
Figure 3
Biosynthesis of BH4 in mammals. Modified from [61].
Figure 4
Figure 4
Biosynthetic pathway of serotonin (5-HT). Tryptophan is hydroxylated by the two forms of TPH to yield 5-HTP, which is then decarboxylated by the aromatic amino acid decarboxylase (AADC) to serotonin.
Figure 5
Figure 5
Structure formulae of some TPH inhibitors.
Figure 6
Figure 6
Chemical formula of tetrahydromonapterin.
Figure 7
Figure 7
Production of 5-HTP from tryptophan in E. coli by engineered PAH and the utilization of tetrahydromonapterin (MH4) instead of BH4. DHMR, dihydromonapterin reductase; PAH, phenylalanine 4-hydroxylase; PCD, pterin-4α-carbinolamine dehydratase; MH2, dihydromonapterin. Modified from [88].
Figure 8
Figure 8
Production of 5-HTP from glucose in engineered E. coli by using a novel salicylate 5-hydroxylase. PEP, phosphoenol pyruvate; E4P, erythrose-4-phosphate; TrpEfbrG, anthranilate synthase (from a feedback resistance mutant); SalABCD, salicylate 5-hydroxylase; TrpDCA and TrpB, E. coli native tryptophan biosynthetic enzymes. Adapted from [90].
Figure 9
Figure 9
Summary of heterologous production of 5-HTP. Chromobacterium violaceum, with the first use of PAH for tryptophan hydroxylation to 5-HTP. Escherichia coli, with a) utilization of MH4 instead of BH4 as the native pterin coenzyme for 5-HTP synthesis, b) the biosynthesis of 5-HTP with the use of a novel salicylate 5-hydroxylase that uses glucose as the substrate for the production of the non-natural substrate anthranilate to 5-hydroxyanthranilate (5-HI), c) substitution of the promoter of aroHfbr gene encoding 3-deoxy-7-phosphoheptulonate synthase to feed the biosynthetic pathway of tryptophan production. The use of yeasts with the heterologous expression of either a prokaryotic PAH or eukaryotic tryptophan 3/5-hydroxylase, together with enhanced synthesis of the two cofactors MH4 or BH4; the native Saccharomyces cerevisiae gene, DFR1, which encodes dihydrofolate reductase to catalyze tetrahydrofolate, plays a pivotal role in 5-HTP synthesis by regenerating MH4. Created with BioRender.com.
Figure 10
Figure 10
Summary of effects of 5-HTP on some animals. In terrestrial snails, 5-HTP reinstates the context memory, whereas in mice, 5-HTP produces a characteristic head twitch and tremors, induces hypoglycemia, and suppresses inflammation by inducing pro-inflammatory mediators. In rats, most of the listed effects of 5-HTP are dose dependent. In guinea pigs, 5-HTP enhances myoclonus and facilitates the luminal 5-HT release. In dogs, 5-HTP increases propulsive activity, contractive force, and mobility index. Injection of 5-HTP facilitates the stretch reflex in cats and produces a fall in temperature in rabbits. In sheep, 5-HTP increases serum melatonin and foetal breathing movements and stimulates an autocrine–paracrine adaptation to lactation in cows. Created with BioRender.com.
Figure 11
Figure 11
Summary of some effects of 5-HTP on humans. 5-HTP is a treatment of choice in the prophylaxis of migraine and headache and promotes decreased food intake and weight loss in obese patients. 5-HTP is used for treating depressive symptoms in Parkinson’s disease and may be used as a diagnostic test for Alzheimer’s disease. 5-HTP is useful to control some forms of myoclonus and significantly increases plasma human prolactin. Excessive 5-HTP generates serotonin syndrome. 5-HTP has the potential for use in the treatment of inflammatory diseases and oxidative stress. As a precursor of 5-HT, 5-HTP treatment is used to reduce depression, anxiety, and panic attacks. 5-HTP is associated with an increase in rapid eye movement (REM) sleep and reduces sleep disorder. Created with BioRender.com.

References

    1. Strac D.S., Pivac N., Muck-Seler D. The serotonergic system and cognitive function. Transl. Neurosci. 2016;7:35–49.
    1. Ye T.T., Yin X.M., Yu L., Zheng S.J., Cai W.J., Wu Y., Feng Y.Q. Metabolic analysis of the melatonin biosynthesis pathway using chemical labeling coupled with liquid chromatography-mass spectrometry. J. Pineal Res. 2019;66:11. doi: 10.1111/jpi.12531.
    1. Samanta S. Physiological and pharmacological perspectives of melatonin. Arch. Physiol. Biochem. 2020:1–22. doi: 10.1080/13813455.2020.1770799.
    1. Walther D.J., Bader M. A unique central tryptophan hydroxylase isoform. Biochem. Pharmacol. 2003;66:1673–1680. doi: 10.1016/S0006-2952(03)00556-2.
    1. Das Y.T., Bagchi M., Bagchi D., Preuss H.G. Safety of 5-hydroxy-l-tryptophan. Toxicol. Lett. 2004;150:111–122. doi: 10.1016/j.toxlet.2003.12.070.
    1. Klarskov K., Gagnon H., Boudreault P.L., Normandin C., Plancq B., Marsault E., Gleich G.J., Naylor S. Structure determination of disease associated peak aaa from l-tryptophan implicated in the eosinophilia-myalgia syndrome. Toxicol. Lett. 2018;282:71–80. doi: 10.1016/j.toxlet.2017.10.012.
    1. Klarskov K., Johnson K.L., Benson L.M., Cragun J.D., Gleich G.J., Wrona M., Jiang X.R., Dryhurst G., Naylor S. Structural characterization of a case-implicated contaminant, “peak x,” in commercial preparations of 5-hydroxytryptophan. J. Rheumatol. 2003;30:89–95.
    1. Klarskov K., Johnson K.L., Benson L.M., Gleich G.J., Naylor S. Eosinophilia-myalgia syndrome case-associated contaminants in commercially available 5-hydroxytryptophan. In: Huether G., Kochen W., Simat T.J., Steinhart H., editors. Tryptophan, Serotonin and Melatonin: Basic Aspects and Applications. Springer; New York, NY, USA: 1999. pp. 461–468.
    1. Esposito M., Precenzano F., Sorrentino M., Avolio D., Carotenuto M. A medical food formulation of griffonia simplicifolia/magnesium for childhood periodic syndrome therapy: An open-label study on motion sickness. J. Med. Food. 2015;18:916–920. doi: 10.1089/jmf.2014.0113.
    1. Rondanelli M., Opizzi A., Faliva M., Bucci M., Perna S. Relationship between the absorption of 5-hydroxytryptophan from an integrated diet, by means of griffonia simplicifolia extract, and the effect on satiety in overweight females after oral spray administration. Eat. Weight Disord. Stud. Anorex. Bulim. Obes. 2012;17:E22–E28.
    1. Carnevale G., Di Viesti V., Zavatti M., Benelli A., Zanoli P. Influence of griffonia simplicifolia on male sexual behavior in rats: Behavioral and neurochemical study. Phytomedicine. 2011;18:947–952. doi: 10.1016/j.phymed.2011.02.009.
    1. Carnevale G., Di Viesti V., Zavatti M., Zanoli P. Anxiolytic-like effect of griffonia simplicifolia baill. Seed extract in rats. Phytomedicine. 2011;18:848–851. doi: 10.1016/j.phymed.2011.01.016.
    1. Babu S.K., Ramakrishna T., Subbaraju G.V. Hplc estimation of 5-hydroxytryptophan in griffonia simplicifolia extracts. Asian J. Chem. 2005;17:506–510.
    1. Lemaire P.A., Adosraku R.K. An hplc method for the direct assay of the serotonin precursor, 5-hydroxytrophan, in seeds of griffonia simplicifolia. Phytochem. Anal. 2002;13:333–337. doi: 10.1002/pca.659.
    1. Vigliante I., Mannino G., Maffei M.E. Chemical characterization and DNA fingerprinting of griffonia simplicifolia baill. Molecules. 2019;24:1032. doi: 10.3390/molecules24061032.
    1. Glinwood R., Pettersson J., Ahmed E., Ninkovic V., Birkett M., Pickett J. Change in acceptability of barley plants to aphids after exposure to allelochemicals from couch-grass (elytrigia repens) J. Chem. Ecol. 2003;29:261–274. doi: 10.1023/A:1022687025416.
    1. Hagin R.D. Isolation and identification of 5-hydroxyindole-3-acetic acid and 5-hydroxytryptophan, major allelopathic aglycons in quackgrass (agropyron-repens l beauv) J. Agric. Food Chem. 1989;37:1143–1149. doi: 10.1021/jf00088a072.
    1. Murch S.J., KrishnaRaj S., Saxena P.K. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated st. John’s wort (hypericum perforatum l. Cv. Anthos) plants. Plant Cell Rep. 2000;19:698–704. doi: 10.1007/s002990000206.
    1. Fernandez-Cruz E., Cerezo A.B., Cantos-Villar E., Troncoso A.M., Garcia-Parrilla M.C. Time course of l-tryptophan metabolites when fermenting natural grape musts: Effect of inoculation treatments and cultivar on the occurrence of melatonin and related indolic compounds. Aust. J. Grape Wine Res. 2019;25:92–100. doi: 10.1111/ajgw.12369.
    1. Diamante M.S., Borges C.V., da Silva M.B., Minatel I.O., Correa C.R., Gomez H.A.G., Lima G.P.P. Bioactive amines screening in four genotypes of thermally processed cauliflower. Antioxidants. 2019;8:311. doi: 10.3390/antiox8080311.
    1. Lysek N., Kinscherf R., Claus R., Lindel T. L-5-hydroxytryptophan: Antioxidant and anti-apoptotic principle of the intertidal sponge hymeniacidon heliophila. Z. Fur Nat. C J. Biosci. 2003;58:568–572. doi: 10.1515/znc-2003-7-821.
    1. Muszynska B., Sulkowska-Ziaja K., Ekiert H. Indole compounds in fruiting bodies of some edible basidiomycota species. Food Chem. 2011;125:1306–1308. doi: 10.1016/j.foodchem.2010.10.056.
    1. Muszynska B., Sulkowska-Ziaja K., Ekiert H. Analysis of indole compounds in methanolic extracts from the fruiting bodies of cantharellus cibarius (the chanterelle) and from the mycelium of this species cultured in vitro. J. Food Sci. Technol. Mysore. 2013;50:1233–1237. doi: 10.1007/s13197-013-1009-8.
    1. Gurevich L.S. Indole-derivatives in certain panaeolus species from east europe and siberia. Mycol. Res. 1993;97:251–254. doi: 10.1016/S0953-7562(09)80249-9.
    1. Koppisetti G., Siriki A., Sukala K., Subbaraju G.V. Estimation of l-5-hydroxytryptophan in rat serum and griffonia seed extracts by liquid chromatography-mass spectrometry. Anal. Chim. Acta. 2005;549:129–133. doi: 10.1016/j.aca.2005.06.006.
    1. Guillen-Casla V., Rosales-Conrado N., Leon-Gonzalez M.E., Perez-Arribas L.V., Polo-Diez L.M. Determination of serotonin and its precursors in chocolate samples by capillary liquid chromatography with mass spectrometry detection. J. Chromatogr. A. 2012;1232:158–165. doi: 10.1016/j.chroma.2011.11.037.
    1. Magnussen I. Effects of carbidopa on the cerebral accumulation of exogenous l-5-hydroxytryptophan in mice. Acta Pharm. Toxicol. (Copenh) 1984;55:199–202. doi: 10.1111/j.1600-0773.1984.tb02037.x.
    1. Boulet L., Faure P., Flore P., Monteremal J., Ducros V. Simultaneous determination of tryptophan and 8 metabolites in human plasma by liquid chromatography/tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017;1054:36–43. doi: 10.1016/j.jchromb.2017.04.010.
    1. Konieczna L., Roszkowska A., Niedzwiecki M., Baczek T. Hydrophilic interaction chromatography combined with dispersive liquid-liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples. J. Chromatogr. A. 2016;1431:111–121. doi: 10.1016/j.chroma.2015.12.062.
    1. Morgan L.D., Baker H., Yeoman M.S., Patel B.A. Chromatographic assay to study the activity of multiple enzymes involved in the synthesis and metabolism of dopamine and serotonin. Analyst. 2012;137:1409–1415. doi: 10.1039/c2an16227j.
    1. Fickbohm D.J., Lynn-Bullock C.P., Spitzer N., Caldwell H.K., Katz P.S. Localization and quantification of 5-hydroxytryptophan and serotonin in the central nervous systems of tritonia and aplysia. J. Comp. Neurol. 2001;437:91–105. doi: 10.1002/cne.1272.
    1. Coelho A.G., Aguiar F.P.C., de Jesus D.P. A rapid and simple method for determination of 5-hydroxytryptophan in dietary supplements by capillary electrophoresis. J. Braz. Chem. Soc. 2014;25:783–787. doi: 10.5935/0103-5053.20140029.
    1. Peterson Z.D., Lee M.L., Graves S.W. Determination of serotonin and its precursors in human plasma by capillary electrophoresis-electrospray ionization-time-of-flight mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004;810:101–110. doi: 10.1016/S1570-0232(04)00597-5.
    1. Wise D.D., Shear J.B. Quantitation of nicotinamide and serotonin derivatives and detection of flavins in neuronal extracts using capillary electrophoresis with multiphoton-excited fluorescence. J. Chromatogr. A. 2006;1111:153–158. doi: 10.1016/j.chroma.2005.07.067.
    1. Qiao C.D., Song P.S., Yan X., Jiang S.X. Separation of biogenic amines by micellar electrokinetic chromatography. Chin. J. Anal. Chem. 2007;35:95–98.
    1. Shi H.M., Wang B., Niu L.M., Cao M.S., Kang W.J., Lian K.Q., Zhang P.P. Trace level determination of 5-hydroxytryptamine and its related indoles in amniotic fluid by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2017;143:176–182. doi: 10.1016/j.jpba.2017.05.044.
    1. Hinterholzer A., Stanojlovic V., Regl C., Huber C.G., Cabrele C., Schubert M. Identification and quantification of oxidation products in full-length biotherapeutic antibodies by nmr spectroscopy. Anal. Chem. 2020;92:9666–9673. doi: 10.1021/acs.analchem.0c00965.
    1. Kuo T.R., Chen J.S., Chiu Y.C., Tsai C.Y., Hu C.C., Chen C.C. Quantitative analysis of multiple urinary biomarkers of carcinoid tumors through gold-nanoparticle-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chim. Acta. 2011;699:81–86. doi: 10.1016/j.aca.2011.05.012.
    1. Bisby R.H., Arvanitidis M., Botchway S.W., Clark I.P., Parker A.W., Tobin D. Investigation of multiphoton-induced fluorescence from solutions of 5-hydroxytryptophan. Photochem. Photobiol. Sci. 2003;2:157–162. doi: 10.1039/b206848f.
    1. Tunna I.J., Patel B.A. Analysis of 5-hydroxytryptophan in the presence of excipients from dietary capsules: Comparison between cyclic voltammetry and uv visible spectroscopy. Anal. Methods. 2013;5:2523–2528. doi: 10.1039/c3ay26482c.
    1. Chen Y.H., Li G.K., Hu Y.F. A sensitive electrochemical method for the determination of 5-hydroxytryptophan in rats’ brain tissue based on a carbon nanosheets-modified electrode. Anal. Methods. 2015;7:1971–1976. doi: 10.1039/C4AY02843K.
    1. Ranganathan D., Zamponi S., Berrettoni M., Mehdi B.L., Cox J.A. Oxidation and flow-injection amperometric determination of 5-hydroxytryptophan at an electrode modified by electrochemically assisted deposition of a sol-gel film with templated nanoscale pores. Talanta. 2010;82:1149–1155. doi: 10.1016/j.talanta.2010.06.025.
    1. Kalachar H.C.B., Arthoba Naik Y., Basavanna S., Viswanatha R., Venkatesha T.G., Sheela T. Amperometric and differential pulse voltammetric determination of 5-hydroxy-l-tryptophan in pharmaceutical samples using gold modified pencil graphite electrode. J. Chem. Pharm. Res. 2011;3:530–539.
    1. Chen L., Lian H.T., Sun X.Y., Liu B. Sensitive detection of l-5-hydroxytryptophan based on molecularly imprinted polymers with graphene amplification. Anal. Biochem. 2017;526:58–65. doi: 10.1016/j.ab.2017.03.017.
    1. Kumar N., Goyal R.N. Simultaneous determination of melatonin and 5-hydroxytrptophan at the disposable poly-(melamine)/poly-(o-aminophenol) composite modified screen printed sensor. J. Electro. Anal. Chem. 2020;874:114458. doi: 10.1016/j.jelechem.2020.114458.
    1. Kumar N., Sharma R., Goyal R.N. Palladium nano particles decorated multi-walled carbon nanotubes modified sensor for the determination of 5-hydroxytryptophan in biological fluids. Sens. Actuators B Chem. 2017;239:1060–1068. doi: 10.1016/j.snb.2016.08.122.
    1. Li M.D., Tseng W.L., Cheng T.L. Ultrasensitive detection of indoleamines by combination of nanoparticle-based extraction with capillary electrophoresis/laser-induced native fluorescence. J. Chromatogr. A. 2009;1216:6451–6458. doi: 10.1016/j.chroma.2009.07.034.
    1. Shahrokhian S., Bayat M. Pyrolytic graphite electrode modified with a thin film of a graphite/diamond nano-mixture for highly sensitive voltammetric determination of tryptophan and 5-hydroxytryptophan. Microchim. Acta. 2011;174:361–366. doi: 10.1007/s00604-011-0631-2.
    1. Seo K.D., Hossain M.M.D., Gurudatt N.G., Choi C.S., Shiddiky M.J.A., Park D.S., Shim Y.B. Microfluidic neurotransmitters sensor in blood plasma with mediator-immobilized conducting polymer/n, s-doped porous carbon composite. Sens. Actuators B Chem. 2020;313:128017. doi: 10.1016/j.snb.2020.128017.
    1. Hamlin K.E., Fischer F.E. The synthesis of 5-hydroxytryptamine. J. Am. Chem. Soc. 1951;73:5007–5008. doi: 10.1021/ja01154a551.
    1. Ek A., Witkop B. The synthesis of labile hydroxytryptophan metabolites1. J. Am. Chem. Soc. 1954;76:5579–5588. doi: 10.1021/ja01651a001.
    1. Snyder H.R., Smith C.W. A convenient synthesis of dl-tryptophan. J. Am. Chem. Soc. 1944;66:350–351. doi: 10.1021/ja01231a008.
    1. Koo J., Avakian S., Martin G.J. Synthesis in the 5-hydroxyindole series. N-acetyl-5-hydroxytryptophan and related compounds. J. Org. Chem. 1959;24:179–183. doi: 10.1021/jo01084a008.
    1. Frangatos G., Chubb F.L. A new synthesis of 5-hydroxytryptophan. Can. J. Chem. 1959;37:1374–1376. doi: 10.1139/v59-200.
    1. Moe O.A., Warner D.T. 1,4-addition reactions. I. The addition of acylamidomalonates to acrolein1a. J. Am. Chem. Soc. 1948;70:2763–2765. doi: 10.1021/ja01188a037.
    1. Fitzpatrick P.F. Tetrahydropterin-dependent amino acid hydroxylases. Annu. Rev. Biochem. 1999;68:355–381. doi: 10.1146/annurev.biochem.68.1.355.
    1. Eser B.E., Barr E.W., Frantorn P.A., Saleh L., Bollinger J.M., Krebs C., Fitzpatrick P.F. Direct spectroscopic evidence for a high-spin fe(iv) intermediate in tyrosine hydroxylase. J. Am. Chem. Soc. 2007;129:11334. doi: 10.1021/ja074446s.
    1. Pavon J.A., Eser B., Huynh M.T., Fitzpatrick P.F. Single turnover kinetics of tryptophan hydroxylase: Evidence for a new intermediate in the reaction of the aromatic amino acid hydroxylases. Biochemistry. 2010;49:7563–7571. doi: 10.1021/bi100744r.
    1. Hara R., Kino K. Enhanced synthesis of 5-hydroxy-l-tryptophan through tetrahydropterin regeneration. AMB Express. 2013;3:7. doi: 10.1186/2191-0855-3-70.
    1. Wang H.J., Liu W.Q., Shi F., Huang L., Lian J.Z., Qu L., Cai J., Xu Z.A. Metabolic pathway engineering for high-level production of 5-hydroxytryptophan in escherichia coli. Metab. Eng. 2018;48:279–287. doi: 10.1016/j.ymben.2018.06.007.
    1. Yamamoto K., Kataoka E., Miyamoto N., Furukawa K., Ohsuye K., Yabuta M. Genetic engineering of escherichia coli for production of tetrahydrobiopterin. Metab. Eng. 2003;5:246–254. doi: 10.1016/S1096-7176(03)00046-6.
    1. Moran G.R., Fitzpatrick P.F. A continuous fluorescence assay for tryptophan hydroxylase. Anal. Biochem. 1999;266:148–152. doi: 10.1006/abio.1998.2956.
    1. Flatmark T., Stevens R.C. Structural insight into the aromatic amino acid hydroxylases and their disease-related mutant forms. Chem. Rev. 1999;99:2137–2160. doi: 10.1021/cr980450y.
    1. Ehret M., Cash C.D., Hamon M., Maitre M. Formal demonstration of the phosphorylation of rat brain tryptophan hydroxylase by ca2+/calmodulin-dependent protein kinase. J. Neurochem. 1989;52:1886–1891. doi: 10.1111/j.1471-4159.1989.tb07272.x.
    1. Matthes S., Bader M. Peripheral serotonin synthesis as a new drug target. Trends Pharmacol. Sci. 2018;39:560–572. doi: 10.1016/j.tips.2018.03.004.
    1. Hoglund E., Overli O., Winberg S. Tryptophan metabolic pathways and brain serotonergic activity: A comparative review. Front. Endocrinol. 2019;10:158. doi: 10.3389/fendo.2019.00158.
    1. Sakowski S.A., Geddes T.J., Thomas D.M., Levi E., Hatfield J.S., Kuhn D.M. Differential tissue distribution of tryptophan hydroxylase isoforms 1 and 2 as revealed with monospecific antibodies. Brain Res. 2006;1085:11–18. doi: 10.1016/j.brainres.2006.02.047.
    1. Ota M., Dostert P., Hamanaka T., Nagatsu T., Naoi M. Inhibition of tryptophan hydroxylase by (r)- and (s)-1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines (salsolinols) Neuropharmacology. 1992;31:337–341. doi: 10.1016/0028-3908(92)90065-W.
    1. Kim E.I., Kang M.H., Lee M.K. Inhibitory effects of tetrahydropapaverine on serotonin biosynthesis in murine mastocytoma p815 cells. Life Sci. 2004;75:1949–1957. doi: 10.1016/j.lfs.2004.04.017.
    1. Naoi M., Hosoda S., Ota M., Takahashi T., Nagatsu T. Inhibition of tryptophan hydroxylase by food-derived carcinogenic heterocyclic amines, 3-amino-1-methyl-5h-pyrido[4,3-b]indole and 3-amino-1,4-dimethyl-5h-pyrido[4,3-b]indole. Biochem. Pharmacol. 1991;41:199–203. doi: 10.1016/0006-2952(91)90477-M.
    1. Zimmer L., Luxen A., Giacomelli F., Pujol J.F. Short- and long-term effects of p-ethynylphenylalanine on brain serotonin levels. Neurochem. Res. 2002;27:269–275. doi: 10.1023/A:1014998926763.
    1. Liu Q.Y., Yang Q., Sun W.M., Vogel P., Heydorn W., Yu X.Q., Hu Z.X., Yu W.S., Jonas B., Pineda R., et al. Discovery and characterization of novel tryptophan hydroxylase inhibitors that selectively inhibit serotonin synthesis in the gastrointestinal tract. J. Pharmacol. Exp. Ther. 2008;325:47–55. doi: 10.1124/jpet.107.132670.
    1. Cianchetta G., Stouch T., Yu W., Shi Z.C., Tari L.W., Swanson R.V., Hunter M.J., Hoffman I.D., Liu Q. Mechanism of inhibition of novel tryptophan hydroxylase inhibitors revealed by co-crystal structures and kinetic analysis. Curr. Chem. Genom. 2010;4:19–26. doi: 10.2174/1875397301004010019.
    1. Markham A. Telotristat ethyl: First global approval. Drugs. 2017;77:793–798. doi: 10.1007/s40265-017-0737-x.
    1. Goldberg D.R., De Lombaert S., Aiello R., Bourassa P., Barucci N., Zhang Q., Paralkar V., Stein A.J., Valentine J., Zavadoski W. Discovery of acyl guanidine tryptophan hydroxylase-1 inhibitors. Bioorganic Med. Chem. Lett. 2016;26:2855–2860. doi: 10.1016/j.bmcl.2016.04.057.
    1. Goldberg D.R., De Lombaert S., Aiello R., Bourassa P., Barucci N., Zhang Q., Paralkar V., Stein A.J., Holt M., Valentine J., et al. Optimization of spirocyclic proline tryptophan hydroxylase-1 inhibitors. Bioorganic Med. Chem. Lett. 2017;27:413–419. doi: 10.1016/j.bmcl.2016.12.053.
    1. Shi H., Cui Y., Qin Y. Discovery and characterization of a novel tryptophan hydroxylase 1 inhibitor as a prodrug. Chem. Biol. Drug Des. 2018;91:202–212. doi: 10.1111/cbdd.13071.
    1. Barbosa R., Scialfa J.H., Terra I.M., Cipolla-Neto J., Simonneaux V., Afeche S.C. Tryptophan hydroxylase is modulated by l-type calcium channels in the rat pineal gland. Life Sci. 2008;82:529–535. doi: 10.1016/j.lfs.2007.12.011.
    1. Braga A., Faria N. Bioprocess optimization for the production of aromatic compounds with metabolically engineered hosts: Recent developments and future challenges. Front. Bioeng. Biotechnol. 2020;8:18. doi: 10.3389/fbioe.2020.00096.
    1. Xu P., Gu Q., Wang W.Y., Wong L., Bower A.G.W., Collins C.H., Koffas M.A.G. Modular optimization of multi-gene pathways for fatty acids production in e. Coli. Nat. Commun. 2013;4:1409. doi: 10.1038/ncomms2425.
    1. Li L., Liu Z., Jiang H., Mao X.Z. Biotechnological production of lycopene by microorganisms. Appl. Microbiol. Biotechnol. 2020;104:10307–10324. doi: 10.1007/s00253-020-10967-4.
    1. Chen X.X., Zhang C.Q., Lindley N.D. Metabolic engineering strategies for sustainable terpenoid flavor and fragrance synthesis. J. Agric. Food Chem. 2020;68:10252–10264. doi: 10.1021/acs.jafc.9b06203.
    1. Anarat-Cappillino G., Sattely E.S. The chemical logic of plant natural product biosynthesis. Curr. Opin. Plant Biol. 2014;19:51–58. doi: 10.1016/j.pbi.2014.03.007.
    1. Mitoma C., Weissbach H., Udenfriend S. 5-hydroxytryptophan formation and tryptophan metabolism in chromobacterium violaceum. Arch. Biochem. Biophys. 1956;63:122–130. doi: 10.1016/0003-9861(56)90016-9.
    1. Letendre C.H., Dickens G., Guroff G. The tryptophan hydroxylase of chromobacterium violaceum. J. Biol. Chem. 1974;249:7186–7191.
    1. Kino K., Hara R., Nozawa A. Enhancement of l-tryptophan 5-hydroxylation activity by structure-based modification of l-phenylalanine 4-hydroxylase from chromobacterium violaceum. J. Biosci. Bioeng. 2009;108:184–189. doi: 10.1016/j.jbiosc.2009.04.002.
    1. Pribat A., Blaby I.K., Lara-Nunez A., Gregory J.F., de Crecy-Lagard V., Hanson A.D. Folx and folm are essential for tetrahydromonapterin synthesis in escherichia coli and pseudomonas aeruginosa. J. Bacteriol. 2010;192:475–482. doi: 10.1128/JB.01198-09.
    1. Lin Y.H., Sun X.X., Yuan Q.P., Yan Y.J. Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan. Acs Synth. Biol. 2014;3:497–505. doi: 10.1021/sb5002505.
    1. Mora-Villalobos J.A., Zeng A.P. Synthetic pathways and processes for effective production of 5-hydroxytryptophan and serotonin from glucose in escherichia coli. J. Biol. Eng. 2018;12:3. doi: 10.1186/s13036-018-0094-7.
    1. Sun X.X., Lin Y.H., Yuan Q.P., Yan Y.J. Precursor-directed biosynthesis of 5-hydroxytryptophan using metabolically engineered e. Coli. Acs Synth. Biol. 2015;4:554–558. doi: 10.1021/sb500303q.
    1. Luo H., Schneider K., Christensen U., Lei Y., Herrgard M.J., Palsson B.O. Microbial synthesis of human-hormone melatonin at gram scales. Acs Synth. Biol. 2020;9:1240–1245. doi: 10.1021/acssynbio.0c00065.
    1. Xu D., Fang M.J., Wang H.J., Huang L., Xu Q.Y., Xu Z.N. Enhanced production of 5-hydroxytryptophan through the regulation of l-tryptophan biosynthetic pathway. Appl. Microbiol. Biotechnol. 2020;104:2481–2488. doi: 10.1007/s00253-020-10371-y.
    1. Zhang J.T., Wu C.C., Sheng J.Y., Feng X.Y. Molecular basis of 5-hydroxytryptophan synthesis in saccharomyces cerevisiae. Mol. Biosyst. 2016;12:1432–1435. doi: 10.1039/C5MB00888C.
    1. Smith A.N., Black J.W., Fisher E.W. Inhibitory effect of 5-hydroxytryptophan on acid gastric secretion. Nature. 1957;180:1127. doi: 10.1038/1801127a0.
    1. Bulbring E., Lin R.C. The effect of intraluminal application of 5-hydroxytryptamine and 5-hydroxytryptophan on peristalsis; the local production of 5-ht and its release in relation to intraluminal pressure and propulsive activity. J. Physiol. 1958;140:381–407.
    1. Udenfriend S., Weissbach H., Bogdanski D.F. Increase in tissue serotonin following administration of its precursor 5-hydroxytryptophan. J. Biol. Chem. 1957;224:803–810.
    1. Bogdanski D.F., Weissbach H., Udenfriend S. Pharmacological studies with the serotonin precursor, 5-hydroxytryptophan. J. Pharmacol. Exp. Ther. 1958;122:182–194.
    1. Corne S.J., Pickering R.W., Warner B.T. A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br. J. Pharmacol. Chemother. 1963;20:106–120. doi: 10.1111/j.1476-5381.1963.tb01302.x.
    1. Martin P., Frances H., Simon P. Dissociation of head twitches and tremors during the study of interactions with 5-hydroxytryptophan in mice. J. Pharmacol. Methods. 1985;13:193–200. doi: 10.1016/0160-5402(85)90019-1.
    1. Endo Y. Evidence that the accumulation of 5-hydroxytryptamine in the liver but not in the brain may cause the hypoglycemia induced by 5-hydroxytryptophan. Br. J. Pharmacol. 1985;85:591–598. doi: 10.1111/j.1476-5381.1985.tb10553.x.
    1. Endo Y. Suppression and potentiation of 5-hydroxytryptophan-induced hypoglycemia by alpha-monofluoromethyldopa-correlation with the accumulation of 5-hydroxytryptamine in the liver. Br. J. Pharmacol. 1987;90:161–165.
    1. Yang T.H., Hsu P.Y., Meng M.H., Su C.C. Supplement of 5-hydroxytryptophan before induction suppresses inflammation and collagen-induced arthritis. Arthritis Res. Ther. 2015;17:364. doi: 10.1186/s13075-015-0884-y.
    1. Rogóz Z., Skuza G., Sowińska H. The effect of the antihistaminic drugs on the central action of 5-hydroxytryptophan in mice. Polish J. Pharm. Pharm. 1981;33:459–465.
    1. Truscott T.C. Effects of phenylalanine and 5-hydroxytryptophan on seizure severity in mice. Pharm. Biochem. Behav. 1975;3:939–941. doi: 10.1016/0091-3057(75)90133-1.
    1. Carter R.B., Dykstra L.A., Leander J.D., Appel J.B. Role of peripheral mechanisms in the behavioral effects of 5-hydroxytryptophan. Pharmacol. Biochem. Behav. 1978;9:249–253. doi: 10.1016/0091-3057(78)90172-7.
    1. Sharma A., Castellani R.J., Smith M.A., Muresanu D.F., Dey P.K., Sharma H.S. 5-hydroxytryptophan: A precursor of serotonin influences regional blood-brain barrier breakdown, cerebral blood flow, brain edema formation, and neuropathology. In: Sharma H.S., Sharma A., editors. New Therapeutic Strategies for Brain Edema and Cell Injury. Academic Press; Cambridge, MA, USA: 2019. pp. 1–44.
    1. Yap C.Y., Taylor D.A. Involvement of 5-ht2 receptors in the wet-dog shake behaviour induced by 5-hydroxytryptophan in the rat. Neuropharmacology. 1983;22:801–804. doi: 10.1016/0028-3908(83)90123-5.
    1. Hadzović S., Ernst A.M. The effect of 5-hydroxytryptamine and 5-hydroxytryptophan on extra-pyramidal function. Eur. J. Pharmacol. 1969;6:90–95. doi: 10.1016/0014-2999(69)90202-7.
    1. Meltzer H.Y., Fang V.S. Effect of apomorphine plus 5-hydroxytryptophan on plasma prolactin levels in male rats. Psychopharmacol. Commun. 1976;2:189–198.
    1. Ohgo S., Kato Y., Chihara K., Imura H., Maeda K. Effect of hypothalamic surgery on prolactin release induced by 5-hydroxytryptophan (5-htp) in rats. Endocrinol. Jpn. 1976;23:485–491. doi: 10.1507/endocrj1954.23.485.
    1. Preziosi P., Cerrito F., Vacca M. Effects of naloxone on the secretion of prolactin and corticosterone induced by 5-hydroxytryptophan and a serotonergic agonist, mcpp. Life Sci. 1983;32:2423–2430. doi: 10.1016/0024-3205(83)90367-3.
    1. Hingtgen J.N., Fuller R.W., Mason N.R., Aprison M.H. Blockade of a 5-hydroxytryptophan-induced animal-model of depression with a potent and selective 5-ht2 receptor antagonist (ly53857) Biol. Psychiatry. 1985;20:592–597. doi: 10.1016/0006-3223(85)90093-9.
    1. Dreshfield-Ahmad L.J., Thompson D.C., Schaus J.M., Wong D.T. Enhancement in extracelllar serotonin levels by 5-hydroxytryptophan loading after administration of way 100635 and fluoxetine. Life Sci. 2000;66:2035–2041. doi: 10.1016/S0024-3205(00)00530-0.
    1. Blundell J.E., Latham C.J. Serotonergic influences on food intake: Effect of 5-hydroxytryptophan on parameters of feeding behaviour in deprived and free-feeding rats. Pharmacol. Biochem. Behav. 1979;11:431–437. doi: 10.1016/0091-3057(79)90120-5.
    1. Oconnor L.H., Feder H.H. Estradiol and progesterone influence l-5-hydroxytryptophan-induced myoclonus in male guinea-pigs-sex-differences in serotonin steroid interactions. Brain Res. 1985;330:121–125. doi: 10.1016/0006-8993(85)90012-5.
    1. Pappert E.J., Goetz C.G., Stebbins G.T., Belden M., Carvey P.M. 5-hydroxytryptophan-induced myoclonus in guinea pigs: Mediation through 5-ht1/2 receptor subtypes. Eur. J. Pharmacol. 1998;347:51–56. doi: 10.1016/S0014-2999(98)00086-7.
    1. Kojima S., Ikeda M., Kamikawa Y. Investigation into the 5-hydroxytryptophan-evoked luminal 5-hydroxytryptamine release from the guinea pig colon. Jpn. J. Pharmacol. 2000;84:174–178. doi: 10.1254/jjp.84.174.
    1. Zuzina A.B., Vinarskaya A.K., Balaban P.M. Increase in serotonin precursor levels reinstates the context memory during reconsolidation. Invertebr. Neurosci. 2019;19:8. doi: 10.1007/s10158-019-0227-9.
    1. Banerjee U., Burks T.F., Feldberg W., Goodrich C.A. Temperature responses and other effects of 5-hydroxytryptophan and 5-hydroxytryptamine when acting from the liquor space in unanaesthetized rabbits. Br. J. Pharmacol. 1970;38:688–701. doi: 10.1111/j.1476-5381.1970.tb09877.x.
    1. Fjalland B. Neuroleptic influence on hyperthermia induced by 5-hydroxytryptophan and p-methoxy-amphetamine in maoi-pretreated rabbits. Psychopharmacology. 1979;63:113–117. doi: 10.1007/BF00429687.
    1. Denoyer M., Kitahama K., Sallanon M., Touret M., Jouvet M. 5-hydroxytryptophan uptake and decarboxylating neurons in the cat hypothalamus. Neuroscience. 1989;31:203–211. doi: 10.1016/0306-4522(89)90042-0.
    1. Ellaway P.H., Trott J.R. The mode of action of 5-hydroxytryptophan in facilitating a stretch reflex in the spinal cat. Exp. Brain Res. 1975;22:145–162. doi: 10.1007/BF00237685.
    1. Haverback B.J., Bogdanski D., Hogben C.A. Inhibition of gastric acid secretion in the dog by the precursor of serotonin, 5-hydroxytryptophan. Gastroenterology. 1958;34:188–195. doi: 10.1016/S0016-5085(58)80101-8.
    1. Schemann M., Ehrlein H.J. 5-hydroxytryptophan and cisapride stimulate propulsive jejunal motility and transit of chyme in dogs. Digestion. 1986;34:229–235. doi: 10.1159/000199335.
    1. Antonaccio M.J., Robson R.D. Centrally-mediated cardiovascular effects of 5-hydroxytryptophan in mao-inhibited dogs: Modification by autonomic antagonists. Arch. Int. Pharmacodyn. Ther. 1975;213:200–210.
    1. Sugden D., Namboodiri M.A.A., Klein D.C., Grady R.K., Mefford I.N. Ovine pineal indoles-effects of l-tryptophan or l-5-hydroxytryptophan administration. J. Neurochem. 1985;44:769–772. doi: 10.1111/j.1471-4159.1985.tb12881.x.
    1. Zhao F., Ma C., Zhao G.D., Wang G., Li X.B., Yang K.L. Rumen-protected 5-hydroxytryptohan improves sheep melatonin synthesis in the pineal gland and intestinal tract. Med. Sci. Monit. 2019;25:3605–3616. doi: 10.12659/MSM.915909.
    1. Fletcher D.J., Hanson M.A., Moore P.J., Nijhuis J.G., Parkes M.J. Stimulation of breathing movements by l-5-hydroxytryptophan in fetal sheep during normoxia and hypoxia. J. Physiol. Lond. 1988;404:575–589. doi: 10.1113/jphysiol.1988.sp017307.
    1. Weaver S.R., Prichard A.S., Maerz N.L., Prichard A.P., Endres E.L., Hernandez-Castellano L.E., Akins M.S., Bruckmaier R.M., Hernandez L.L. Elevating serotonin pre-partum alters the holstein dairy cow hepatic adaptation to lactation. PLoS ONE. 2017;12:e0184939. doi: 10.1371/journal.pone.0184939.
    1. Martin T.G. Serotonin syndrome. Ann. Emerg. Med. 1996;28:520–526. doi: 10.1016/S0196-0644(96)70116-6.
    1. Francescangeli J., Karamchandani K., Powell M., Bonavia A. The serotonin syndrome: From molecular mechanisms to clinical practice. Int. J. Mol. Sci. 2019;20:2288. doi: 10.3390/ijms20092288.
    1. Turner E.H., Loftis J.M., Blackwell A.D. Serotonin a la carte: Supplementation with the serotonin precursor 5-hydroxytryptophan. Pharmacol. Ther. 2006;109:325–338. doi: 10.1016/j.pharmthera.2005.06.004.
    1. Agren H., Reibring L., Hartvig P., Tedroff J., Bjurling P., Hornfeldt K., Andersson Y., Lundqvist H., Langstrom B. Low brain uptake of l- c-11 5-hydroxytryptophan in major depression-a positron emission tomography study on patients and healthy-volunteers. Acta Psychiatr. Scand. 1991;83:449–455. doi: 10.1111/j.1600-0447.1991.tb05574.x.
    1. Ryan N.D., Birmaher B., Perel J.M., Dahl R.E., Meyer V., Alshabbout M., Iyengar S., Puigantich J. Neuroendocrine response to l-5-hydroxytryptophan challenge in prepubertal major depression-depressed vs normal-children. Arch. Gen. Psychiatry. 1992;49:843–851. doi: 10.1001/archpsyc.1992.01820110007001.
    1. Coppen A., Shaw D.M., Malleson A. Changes in 5-hydroxytryptophan metabolism in depression. Br. J. Psychiatry J. Ment. Sci. 1965;111:105–107. doi: 10.1192/bjp.111.470.105.
    1. Persson T., Roos B.E. 5-hydroxytryptophan for depression. Lancet. 1967;2:987–988. doi: 10.1016/S0140-6736(67)90824-0.
    1. Byerley W.F., Judd L.L., Reimherr F.W., Grosser B.I. 5-hydroxytryptophan-a review of its antidepressant efficacy and adverse-effects. J. Clin. Psychopharmacol. 1987;7:127–137.
    1. Zmilacher K., Battegay R., Gastpar M. L-5-hydroxytryptophan alone and in combination with a peripheral decarboxylase inhibitor in the treatment of depression. Neuropsychobiology. 1988;20:28–35. doi: 10.1159/000118469.
    1. Smarius L., Jacobs G.E., Hoeberechts-Lefrandt D.H.M., de Kam M.L., van der Post J.P., de Rijk R., van Pelt J., Schoemaker R.C., Zitman F.G., van Gerven J.M.A., et al. Pharmacology of rising oral doses of 5-hydroxytryptophan with carbidopa. J. Psychopharmacol. 2008;22:426–433. doi: 10.1177/0269881107082025.
    1. Van Praag H.M. In search of the mode of action of antidepressants. 5-htp/tyrosine mixtures in depressions. Neuropharmacology. 1983;22:433–440. doi: 10.1016/0028-3908(83)90193-4.
    1. Meltzer H.Y., Umberkoman-Wiita B., Robertson A., Tricou B.J., Lowy M., Perline R. Effect of 5-hydroxytryptophan on serum cortisol levels in major affective disorders. I. Enhanced response in depression and mania. Arch. Gen. Psychiatry. 1984;41:366–374. doi: 10.1001/archpsyc.1984.01790150056009.
    1. van Praag H.M., van den Burg W., Bos E.R., Dols L.C. 5-hydroxytryptophan in combination with clomipramine in “therapy-resistant” depressions. Psychopharmacologia. 1974;38:267–269. doi: 10.1007/BF00421379.
    1. Aliño J.J., Gutierrez J.L., Iglesias M.L. 5-hydroxytryptophan (5-htp) and a maoi (nialamide) in the treatment of depressions. A double-blind controlled study. Int. Pharm. 1976;11:8–15.
    1. Mendlewicz J., Youdim M.B. Antidepressant potentiation of 5-hydroxytryptophan by l-deprenil in affective illness. J. Affect Disord. 1980;2:137–146. doi: 10.1016/0165-0327(80)90013-0.
    1. Kious B.M., Sabic H., Sung Y.H., Kondo D.G., Renshaw P. An open-label pilot study of combined augmentation with creatine monohydrate and 5-hydroxytryptophan for selective serotonin reuptake inhibitor- or serotonin-norepinephrine reuptake inhibitor-resistant depression in adult women. J. Clin. Psychopharmacol. 2017;37:578–583. doi: 10.1097/JCP.0000000000000754.
    1. Kahn R.S., Westenberg H.G.M. L-5-hydroxytryptophan in the treatment of anxiety disorders. J. Affect. Disord. 1985;8:197–200. doi: 10.1016/0165-0327(85)90046-1.
    1. Kahn R.S., Westenberg H.G.M., Verhoeven W.M.A., Gispendewied C.C., Kamerbeek W.D.J. Effect of a serotonin precursor and uptake inhibitor in anxiety disorders-a double-blind comparison of 5-hydroxytryptophan, clomipramine and placebo. Int. Clin. Psychopharmacol. 1987;2:33–45. doi: 10.1097/00004850-198701000-00003.
    1. Ishida A., Takada G., Kobayashi Y., Toyoshima I., Takai K. Effect of tetrahydrobiopterin and 5-hydroxytryptophan on hereditary progressive dystonia with marked diurnal fluctuation-a suggestion of the serotonergic system involvement. Tohoku J. Exp. Med. 1988;154:233–239. doi: 10.1620/tjem.154.233.
    1. Denboer J.A., Westenberg H.G.M. Behavioral, neuroendocrine, and biochemical effects of 5-hydroxytryptophan administration in panic disorder. Psychiatry Res. 1990;31:267–278. doi: 10.1016/0165-1781(90)90096-N.
    1. Schruers K., van Diest R., Overbeek T., Griez E. Acute l-5-hydroxytryptophan administration inhibits carbon dioxide-induced panic in panic disorder patients. Psychiatry Res. 2002;113:237–243. doi: 10.1016/S0165-1781(02)00262-7.
    1. Maron E., Toru I., Vasar V., Shlik J. The effect of 5-hydroxytryptophan on chotecystokinin-4-induced panic attacks in healthy volunteers. J. Psychopharmacol. 2004;18:194–199. doi: 10.1177/0269881104042619.
    1. Wyatt R.J., Zarcone V., Engelman K., Dement W.C., Snyder F., Sjoerdsma A. Effects of 5-hydroxytryptophan on the sleep of normal human subjects. Electroencephalogr. Clin. Neurophysiol. 1971;30:505–509. doi: 10.1016/0013-4694(71)90147-7.
    1. Guilleminault C., Cathala J.P., Castaigne P. Effects of 5-hydroxytryptophan on sleep of a patient with a brain-stem lesion. Electroencephalogr. Clin. Neurophysiol. 1973;34:177–184. doi: 10.1016/0013-4694(73)90045-X.
    1. Zarcone V., Kales A., Scharf M., Tan T.L., Simmons J.Q., Dement W.C. Repeated oral ingestion of 5-hydroxytryptophan. The effect on behavior and sleep processes in two schizophrenic children. Arch. Gen. Psychiatry. 1973;28:843–846. doi: 10.1001/archpsyc.1973.01750360065009.
    1. Petre-Quadens O., De Lee C. 5-hydroxytryptophan and sleep in down’s syndrome. J. Neurol. Sci. 1975;26:443–453. doi: 10.1016/0022-510X(75)90213-0.
    1. Bruni O., Ferri R., Miano S., Verrillo E. L-5-hydroxytryptophan treatment of sleep terrors in children. Eur. J. Pediatrics. 2004;163:402–407. doi: 10.1007/s00431-004-1444-7.
    1. Metz J.T., Holcomb H.H., Meltzer H.Y. Effect of 5-hydroxytryptophan on h-reflex recovery curves in normal subjects and patients with affective-disorders. Biol. Psychiatry. 1988;23:602–611. doi: 10.1016/0006-3223(88)90007-8.
    1. Emanuele E., Bertona M., Minoretti P., Geroldi D. An open-label trial of l-5-hydroxytryptophan in subjects with romantic stress. Neuroendocrinol. Lett. 2010;31:663–666.
    1. Titus F., Davalos A., Alom J., Codina A. 5-hydroxytryptophan versus methysergide in the prophylaxis of migraine-randomized clinical-trial. Eur. Neurol. 1986;25:327–329. doi: 10.1159/000116030.
    1. Maissen C.P., Ludin H.P. Comparative efficacy of 5-hydroxytryptophan and propranolol in interval treatment of migraine. Schweiz. Med. Wochenschr. 1991;121:1585–1590.
    1. Nicolodi M., Sicuteri F. L-5-hydroxytryptophan can prevent nociceptive disorders in man. In: Huether G., Kochen W., Simat T.J., Steinhart H., editors. Tryptophan, Serotonin and Melatonin: Basic Aspects and Applications. Springer; New York, NY, USA: 1999. pp. 177–182.
    1. Ribeiro C.A.F., Portuguese Headache S. L-5-hydroxytryptophan in the prophylaxis of chronic tension-type headache: A double-blind, randomized, placebo-controlled study. Headache. 2000;40:451–456. doi: 10.1046/j.1526-4610.2000.00067.x.
    1. Trouillas P., Brudon F., Adeleine P. Improvement of cerebellar-ataxia with levorotatory form of 5-hydroxytryptophan-a double-blind-study with quantified data-processing. Arch. Neurol. 1988;45:1217–1222. doi: 10.1001/archneur.1988.00520350055016.
    1. Trouillas P., Serratrice G., Laplane D., Rascol A., Augustin P., Barroche G., Clanet M., Degos C.F., Desnuelle C., Dumas R., et al. Levorotatory form of 5-hydroxytryptophan in friedreichs ataxia-results of a double-blind drug-placebo cooperative study. Arch. Neurol. 1995;52:456–460. doi: 10.1001/archneur.1995.00540290042016.
    1. Rus A., Molina F., Del Moral M.L., Ramirez-Exposito M.J., Martinez-Martos J.M. Catecholamine and indolamine pathway: A case-control study in fibromyalgia. Biol. Res. Nurs. 2018;20:577–586. doi: 10.1177/1099800418787672.
    1. Maffei M.E. Fibromyalgia: Recent advances in diagnosis, classification, pharmacotherapy and alternative remedies. Int. J. Mol. Sci. 2020;21:7877. doi: 10.3390/ijms21217877.
    1. Caruso I., Puttini P.S., Cazzola M., Azzolini V. Double-blind-study of 5-hydroxytryptophan versus placebo in the treatment of primary fibromyalgia syndrome. J. Int. Med Res. 1990;18:201–209. doi: 10.1177/030006059001800304.
    1. Volicer L., Langlais P.J., Matson W.R., Mark K.A., Gamache P.H. Serotoninergic system in dementia of the alzheimer type-abnormal forms of 5-hydroxytryptophan and serotonin in cerebrospinal-fluid. Arch. Neurol. 1985;42:1158–1161. doi: 10.1001/archneur.1985.04060110040013.
    1. Sano I., Taniguchi K. [l-5-hydroxytryptophan(l-5-htp) therapy of parkinson’s disease. 2] Munch. Med. Wochenschr. (1950) 1972;114:1717–1719.
    1. Chase T.N. 5-hydroxytryptophan in parkinsonism. Lancet (London, England) 1970;2:1029–1030. doi: 10.1016/S0140-6736(70)92837-0.
    1. Magnussen I., Jensen T.S., Rand J.H., Van Woert M.H. Plasma accumulation of metabolism of orally administered single dose l-5-hydroxytryptophan in man. Acta Pharmacol. Toxicol. (Copenh) 1981;49:184–189. doi: 10.1111/j.1600-0773.1981.tb00890.x.
    1. Meloni M., Puligheddu M., Carta M., Cannas A., Figorilli M., Defazio G. Efficacy and safety of 5-hydroxytryptophan on depression and apathy in parkinson’s disease: A preliminary finding. Eur. J. Neurol. 2020;27:779–786. doi: 10.1111/ene.14179.
    1. Growdon J.H., Young R.R., Shahani B.T. L-5-hydroxytryptophan in treatment of several different syndromes in which myoclonus is prominent. Neurology. 1976;26:1135–1140. doi: 10.1212/WNL.26.12.1135.
    1. Magnussen I., Dupont E., Prange-Hansen A., de Fine Olivarius B. Palatal myoclonus treated with 5-hydroxytryptophan and a decarboxylase-inhibitor. Acta Neurol. Scand. 1977;55:251–253. doi: 10.1111/j.1600-0404.1977.tb05644.x.
    1. Gascon G., Wallenberg B., Daif A.K., Ozand P. Successful treatment of cherry red spot myoclonus syndrome with 5-hydroxytryptophan. Ann. Neurol. 1988;24:453–455. doi: 10.1002/ana.410240317.
    1. Nakano K., Hayakawa T., Shishikura K., Ohsawa M., Suzuki H., Fukuyama Y. Improvement of action myoclonus by an administration of 5-hydroxytryptophan and carbidopa in a child with muscular subsarcolemmal hyperactivity. Brain Dev. 1990;12:516–520. doi: 10.1016/S0387-7604(12)80218-X.
    1. Jimenezjimenez F.J., Roldan A., Zancada F., Molinaarjona J.A., Fernandezballesteros A., Santos J. Spinal myoclonus-successful treatment with the combination of sodium valproate and l-5-hydroxytryptophan. Clin. Neuropharmacol. 1991;14:186–190. doi: 10.1097/00002826-199104000-00009.
    1. Ceci F., Cangiano C., Cairella M., Cascino A., Delben M., Muscaritoli M., Sibilia L., Fanelli F.R. The effects of oral 5-hydroxytryptophan administration on feeding-behavior in obese adult female subjects. J. Neural. Transm. 1989;76:109–117. doi: 10.1007/BF01578751.
    1. Cangiano C., Ceci F., Cascino A., Delben M., Laviano A., Muscaritoli M., Antonucci F., Rossifanelli F. Eating behavior and adherence to dietary prescriptions in obese adult subjects treated with 5-hydroxytryptophan. Am. J. Clin. Nutr. 1992;56:863–867. doi: 10.1093/ajcn/56.5.863.
    1. Kato Y., Nakai Y., Imura H., Chihara K., Ogo S. Effect of 5-hydroxytryptophan (5-htp) on plasma prolactin levels in man. J. Clin. Endocrinol. Metab. 1974;38:695–697. doi: 10.1210/jcem-38-4-695.
    1. Sueldo C.E., Duda M., Kletzky O.A. Influence of sequential doses of 5-hydroxytryptophan on prolactin-release. Am. J. Obstet. Gynecol. 1986;154:424–427. doi: 10.1016/0002-9378(86)90683-6.
    1. Vlasses P.H., Rotmensch H.H., Swanson B.N., Clementi R.A., Ferguson R.K. Effect of repeated doses of l-5-hydroxytryptophan and carbidopa on prolactin and aldosterone secretion in man. J. Endocrinol. Investig. 1989;12:87–91. doi: 10.1007/BF03349926.
    1. Keithahn C., Lerchl A. 5-hydroxytryptophan is a more potent in vitro hydroxyl radical scavenger than melatonin or vitamin c. J. Pineal Res. 2005;38:62–66. doi: 10.1111/j.1600-079X.2004.00177.x.
    1. Derlacz R.A., Sliwinska M., Piekutowska A., Winiarska K., Drozak J., Bryla J. Melatonin is more effective than taurine and 5-hydroxytryptophan against hyperglycemia-induced kidney-cortex tubules injury. J. Pineal Res. 2007;42:203–209. doi: 10.1111/j.1600-079X.2006.00405.x.
    1. Reyes-Gonzales M.C., Fuentes-Broto L., Martinez-Ballarin E., Miana-Mena F.J., Berzosa C., Garcia-Gil F.A., Aranda M., Garcia J.J. Effects of tryptophan and 5-hydroxytryptophan on the hepatic cell membrane rigidity due to oxidative stress. J. Membr. Biol. 2009;231:93–99. doi: 10.1007/s00232-009-9208-y.
    1. Bae S.J., Lee J.S., Kim J.M., Lee E.K., Han Y.K., Kim H.J., Choi J., Ha Y.M., No J.K., Kim Y.H., et al. 5-hydroxytrytophan inhibits tert-butylhydroperoxide (t-bhp)-induced oxidative damage via the suppression of reactive species (rs) and nuclear factor-kappa b (nf-kappa b) activation on human fibroblast. J. Agric. Food Chem. 2010;58:6387–6394. doi: 10.1021/jf904201h.
    1. Chae H.S., Kang O.H., Choi J.G., Oh Y.C., Lee Y.S., Jang H.J., Kim J.H., Park H., Jung K.Y., Sohn D.H., et al. 5-hydroxytryptophan acts on the mitogen-activated protein kinase extracellular-signal regulated protein kinase pathway to modulate cyclooxygenase-2 and inducible nitric oxide synthase expression in raw 264.7 cells. Biol. Pharm. Bull. 2009;32:553–557. doi: 10.1248/bpb.32.553.
    1. Gwaltney-Brant S.M., Albretsen J.C., Khan S.A. 5-hydroxytryptophan toxicosis in dogs: 21 cases (1989–1999) J. Am. Vet. Med Assoc. 2000;216:1937–1940. doi: 10.2460/javma.2000.216.1937.
    1. Shapiro S. Tryptophan produced by showa denko and epidemic eosinophilia-myalgia syndrome-comment. J. Rheumatol. 1996;23:89–91.
    1. Kilbourne E.M., Philen R.M., Kamb M.L., Falk H. Tryptophan produced by showa denko and epidemic eosinophilia-myalgia syndrome. J. Rheumatol. 1996;23:81–88.
    1. Preuss H.G., Echard B., Talpur N., Funk K.A., Bagchi D. Does 5-hydroxytryptophan cause acute and chronic toxic perturbations in rats? Toxicol. Mech. Methods. 2006;16:281–286. doi: 10.1080/15376520500195616.
    1. Belongia E.A., Hedberg C.W., Gleich G.J., White K.E., Mayeno A.N., Loegering D.A., Dunnette S.L., Pirie P.L., MacDonald K.L., Osterholm M.T. An investigation of the cause of the eosinophilia-myalgia syndrome associated with tryptophan use. N. Engl. J. Med. 1990;323:357–365. doi: 10.1056/NEJM199008093230601.
    1. Mayeno A.N., Lin F., Foote C.S., Loegering D.A., Ames M.M., Hedberg C.W., Gleich G.J. Characterization of peak-e, a novel amino-acid associated with eosinophilia-myalgia-syndrome. Science. 1990;250:1707–1708. doi: 10.1126/science.2270484.
    1. Goda Y., Suzuki J., Maitani T., Yoshihira K., Takeda M., Uchiyama M. 3-anilino-l-alanine, structural determination of uv-5, a contaminant in ems-associated l-tryptophan samples. Chem. Pharm. Bull. 1992;40:2236–2238. doi: 10.1248/cpb.40.2236.
    1. Michelson D., Page S.W., Casey R., Trucksess M.W., Love L.A., Milstien S., Wilson C., Massaquoi S.G., Crofford L.J., Hallett M., et al. An eosinophilia-myalgia-syndrome related disorder associated with exposure to l-5-hydroxytryptophan. J. Rheumatol. 1994;21:2261–2265.

Source: PubMed

3
Suscribir