Leucocytes are a major source of circulating nicotinamide phosphoribosyltransferase (NAMPT)/pre-B cell colony (PBEF)/visfatin linking obesity and inflammation in humans

D Friebe, M Neef, J Kratzsch, S Erbs, K Dittrich, A Garten, S Petzold-Quinque, S Blüher, T Reinehr, M Stumvoll, M Blüher, W Kiess, A Körner, D Friebe, M Neef, J Kratzsch, S Erbs, K Dittrich, A Garten, S Petzold-Quinque, S Blüher, T Reinehr, M Stumvoll, M Blüher, W Kiess, A Körner

Abstract

Aims/hypothesis: Nicotinamide phosphoribosyltransferase (NAMPT) is a multifunctional protein potentially involved in obesity and glucose metabolism. We systematically studied the association between circulating NAMPT, obesity, interventions and glucose metabolism and investigated potential underlying inflammatory mechanisms.

Methods: Fasting morning NAMPT serum levels were measured in cohorts of lean vs obese children, cohorts of intervention by lifestyle, exercise and bariatric surgery, and during an OGTT. In addition, mRNA expression, protein production and enzymatic activity of NAMPT were assessed from isolated leucocytes and subpopulations.

Results: Circulating NAMPT was significantly elevated in obese compared with lean children and declined after obesity interventions concomitantly with the decline in BMI, high-sensitivity C-reactive protein (hsCrP) and leucocyte counts. Circulating NAMPT significantly correlated with glucose metabolism and cardiovascular variables in univariate analyses, but only the association with glucose response during an OGTT was independent from BMI. We therefore assessed the NAMPT dynamic following an oral glucose load and found a significant decline of NAMPT levels to 77.0 ± 0.1% as a function of time, and insulin-to-glucose ratio during an OGTT in obese insulin-resistant adolescents. Circulating NAMPT was, however, most strongly associated with leucocyte counts (r = 0.46, p < 0.001). The leucocyte count itself determined significantly and independently from BMI insulin resistance in multiple regression analyses. We systematically evaluated NAMPT expression among several tissues and found that NAMPT was predominantly expressed in leucocytes. In subsequent analyses of leucocyte subpopulations, we identified higher NAMPT protein concentrations in lysates of granulocytes and monocytes compared with lymphocytes, whereas granulocytes secreted highest amounts of NAMPT protein into cell culture supernatant fractions. We confirmed nicotinamide mononucleotide enzymatic activity of NAMPT in all lysates and supernatant fractions. In monocytes, NAMPT release was significantly stimulated by lipopolysaccharide (LPS) exposure.

Conclusions: Leucocytes are a major source of enzymatically active NAMPT, which may serve as a biomarker or even mediator linking obesity, inflammation and insulin resistance.

Figures

Fig. 1
Fig. 1
NAMPT association with obesity. a Obese children (n = 86) had significantly higher NAMPT levels (p = 0.031) compared with lean children (n = 70). Data are mean ± SEM. b NAMPT serum levels correlated with BMI (r = 0.35, p < 0.001). c Changes of NAMPT levels and BMI after 1-year lifestyle intervention in obese children and adolescents (n = 36), 6 months following bariatric surgery in severely obese adults and adolescents (n = 14), and 6 month exercise programme in normal weight adults (n = 15). Data for BMI (open bars) and NAMPT levels (black bars) are given relative to the basal situation (hatched bar), which was set to 1.0. Data are mean ± SEM. Statistical significance was assessed by paired t test. *p < 0.05, **p < 0.01, ***p < 0.001
Fig. 2
Fig. 2
NAMPT association with glucose/insulin metabolism. Correlation of NAMPT serum levels with AUC BG during OGTT (a) (r = 0.25, p = 0.001) and Matsuda ISI (b) (r = −0.29, p < 0.001). White circles = lean children, black circles = obese children. c Children with impaired insulin sensitivity according to Matsuda ISI < 4 (n = 44) had higher NAMPT levels compared with normal insulin sensitivity (n = 105, p = 0.003). Data are given as mean ± SEM and were analysed by t test of log-transformed NAMPT. d Correlation of NAMPT decline (given as mean ratio of NAMPT between 60–120 min to basal NAMPT) and Matsuda ISI (r = 0.48, p = 0.017). Course of blood glucose (e), insulin (f) and NAMPT (g) serum levels during OGTT in insulin-sensitive (n = 11) and insulin-resistant (n = 13) obese children. For NAMPT, data are given as ratio of NAMPT levels at single time points compared with basal NAMPT at t = 0 (pAnova = 0.003). White circles, normal insulin; black circles, hyperinsulinemia. h Three-dimensional plot of NAMPT as a function of insulin-to-glucose ratio and time during OGTT
Fig. 3
Fig. 3
NAMPT association with leucocytes in the Leipzig Atherobesity Childhood cohort. Correlation of NAMPT serum levels with EPC count (a) (r = −0.29, p < 0.001) and hsCrP (b) (r = 0.34, p < 0.001). Correlations of WBC count with metabolic variables AUC insulin (c) (r = 0.35, p < 0.001) and Matsuda ISI (d) (r = −0.33, p < 0.001). The strongest correlation was achieved between NAMPT and WBC count (e) (r = 0.46, p < 0.001). White circles, lean children; black circles, obese children. Correlation coefficients were determined by Pearson correlation analyses of log-transformed variables
Fig. 4
Fig. 4
NAMPT expression pattern, production and secretion by leucocyte subpopulations. a The expression of NAMPT mRNA was significantly higher in PBL than in all other tissues, including adipose tissue and liver (pAnova < 0.0001). Significance was calculated by one-way ANOVA with Dunnett’s post test (compared with PBL). b The mRNA expression of NAMPT was more than fivefold higher in granulocytes and monocytes compared with lymphocytes. c Higher amounts of NAMPT protein were detected in cell lysates of granulocytes and monocytes compared with lymphocytes. d Granulocytes secreted more than 22-fold higher amounts of NAMPT protein into cell culture supernatant fractions (n = 12) when normalised to total protein. Serum concentrations of NAMPT were highly correlated to leucocyte count in particular to neutrophil granulocyte (e) (r = 0.92, p = 0.009) and monocyte (f) (r = 0.94, p = 0.005) count but not to lymphocyte count (g) (n = 6, p = 0.41). h NAMPT enzymatic activity was present in cell lysates and supernatant fractions of all leucocyte subpopulations (n = 5). iSIRT1 mRNA expression was significantly higher in granulocytes compared with lymphocytes and monocytes (n = 12). j The release of NAMPT was significantly increased from monocytes and granulocytes after stimulation with 1 μg/ml LPS for 24 h in n = 3 independent experiments. Data are mean ± SEM. Statistical significance was assessed by Student’s t test and Pearson correlation analysis: *p < 0.05, **p < 0.01, ***p < 0.0001. G, granulocytes; L, lymphocytes; M, monocytes; PBL, peripheral blood leucocytes

References

    1. Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B cell colony-enhancing factor. Mol Cell Biol. 1994;14:1431–1437.
    1. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–430. doi: 10.1126/science.1097243.
    1. Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279:50754–50763. doi: 10.1074/jbc.M408388200.
    1. Garten A, Petzold S, Körner A, Imai S, Kiess W. Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol Metab. 2009;20:130–138. doi: 10.1016/j.tem.2008.10.004.
    1. Revollo JR, Körner A, Mills KF, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007;6:363–375. doi: 10.1016/j.cmet.2007.09.003.
    1. Kiess W, Petzold S, Töpfer M, et al. Adipocytes and adipose tissue. Best Pract Res Clin Endocrinol Metab. 2008;22:135–153. doi: 10.1016/j.beem.2007.10.002.
    1. Berndt J, Klöting N, Kralisch S, et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes. 2005;54:2911–2916. doi: 10.2337/diabetes.54.10.2911.
    1. Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, Ludvik B. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab. 2006;91:1578–1581. doi: 10.1210/jc.2005-2248.
    1. Ingelsson E, Larson MG, Fox CS, et al. Clinical correlates of circulating visfatin levels in a community-based sample. Diabetes Care. 2007;30:1278–1280. doi: 10.2337/dc06-2353.
    1. Retnakaran R, Youn BS, Liu Y, et al. Correlation of circulating full-length visfatin (PBEF/NAMPT) with metabolic variables in subjects with and without diabetes: a cross-sectional study. Clin Endocrinol Oxf. 2008;69:885–893. doi: 10.1111/j.1365-2265.2008.03264.x.
    1. Curat CA, Wegner V, Sengenes C, et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006;49:744–747. doi: 10.1007/s00125-006-0173-z.
    1. Garten A, Petzold S, Barnikol-Oettler A, et al. Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin) is constitutively released from human hepatocytes. Biochem Biophys Res Commun. 2010;391:376–381. doi: 10.1016/j.bbrc.2009.11.066.
    1. Imai S. SIRT1 and caloric restriction: an insight into possible trade-offs between robustness and frailty. Curr Opin Clin Nutr Metab Care. 2009;12:350–356. doi: 10.1097/MCO.0b013e32832c932d.
    1. Imai S. The NAD World: a new systemic regulatory network for metabolism and aging—Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys. 2009;53:65–74. doi: 10.1007/s12013-008-9041-4.
    1. Haider DG, Holzer G, Schaller G, et al. The adipokine visfatin is markedly elevated in obese children. J Pediatr Gastroenterol Nutr. 2006;43:548–549. doi: 10.1097/01.mpg.0000235749.50820.b3.
    1. Jin H, Jiang B, Tang J, et al. Serum visfatin concentrations in obese adolescents and its correlation with age and high-density lipoprotein cholesterol. Diab Res Clin Pract. 2008;79:412–418. doi: 10.1016/j.diabres.2007.09.019.
    1. Reich A, Müller G, Gelbrich G, Deutscher K, Godicke R, Kiess W. Obesity and blood pressure—results from the examination of 2365 schoolchildren in Germany. Int J Obes Relat Metab Disord. 2003;27:1459–1464. doi: 10.1038/sj.ijo.0802462.
    1. Böttner A, Kratzsch J, Muller G, et al. Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J Clin Endocrinol Metab. 2004;89:4053–4061. doi: 10.1210/jc.2004-0303.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22:1462–1470. doi: 10.2337/diacare.22.9.1462.
    1. Friebe D, Neef M, Erbs S et al (2011) Retinol binding protein 4 (RBP4) is primarily associated with adipose tissue mass in children. Int J Pediatr Obes. doi:
    1. Reinehr T, de Sousa G, Toschke AM, Andler W. Long-term follow-up of cardiovascular disease risk factors in children after an obesity intervention. Am J Clin Nutr. 2006;84:490–496.
    1. Fried M, Hainer V, Basdevant A, et al. Interdisciplinary European guidelines on surgery of severe obesity. Obes Facts. 2008;1:52–59. doi: 10.1159/000113937.
    1. Inge TH, Krebs NF, Garcia VF, et al. Bariatric surgery for severely overweight adolescents: concerns and recommendations. Pediatrics. 2004;114:217–223. doi: 10.1542/peds.114.1.217.
    1. Kromeyer-Hauschild K, Wabitsch M, Geller FJ, et al. Perzentilen für den Body Mass Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben [Centiles for body mass index for children and adolescents derived from distinct independent German cohorts] Monatsschr Kinderheilkd. 2001;149:807–818. doi: 10.1007/s001120170107.
    1. Krankel N, Adams V, Linke A, et al. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler Thromb Vasc Biol. 2005;25:698–703. doi: 10.1161/01.ATV.0000156401.04325.8f.
    1. Körner A, Garten A, Bluher M, Tauscher R, Kratzsch J, Kiess W. Molecular characteristics of serum visfatin and differential detection by immunoassays. J Clin Endocrinol Metab. 2007;92:4783–4791. doi: 10.1210/jc.2007-1304.
    1. Elliott GC, Ajioka J, Okada CY. A rapid procedure for assaying nicotinamide phosphoribosyltransferase. Anal Biochem. 1980;107:199–205. doi: 10.1016/0003-2697(80)90512-6.
    1. Bo S, Ciccone G, Baldi I, et al. Plasma visfatin concentrations after a lifestyle intervention were directly associated with inflammatory markers. Nutr Metab Cardiovasc Dis. 2009;19:423–430. doi: 10.1016/j.numecd.2008.09.001.
    1. Brema I, Hatunic M, Finucane F, et al. Plasma visfatin is reduced after aerobic exercise in early onset type 2 diabetes mellitus. Diab Obes Metab. 2008;10:600–602. doi: 10.1111/j.1463-1326.2008.00872.x.
    1. Haider DG, Schaller G, Kapiotis S, Maier C, Luger A, Wolzt M. The release of the adipocytokine visfatin is regulated by glucose and insulin. Diabetologia. 2006;49:1909–1914. doi: 10.1007/s00125-006-0303-7.
    1. Hofso D, Ueland T, Hager H, et al. Inflammatory mediators in morbidly obese subjects: associations with glucose abnormalities and changes after oral glucose. Eur J Endocrinol. 2009;161:451–458. doi: 10.1530/EJE-09-0421.
    1. Li L, Yang G, Li Q, et al. Changes and relations of circulating visfatin, apelin, and resistin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Exp Clin Endocrinol Diab. 2006;114:544–548. doi: 10.1055/s-2006-948309.
    1. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324:654–657. doi: 10.1126/science.1170803.
    1. Ramsey KM, Yoshino J, Brace CS, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324:651–654. doi: 10.1126/science.1171641.
    1. Chen MP, Chung FM, Chang DM, et al. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2006;91:295–299. doi: 10.1210/jc.2005-1475.
    1. de Kreutzenberg SV, Ceolotto G, Papparella I, et al. Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes. 2010;59:1006–1015. doi: 10.2337/db09-1187.
    1. Orimo M, Minamino T, Miyauchi H, et al. Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler Thromb Vasc Biol. 2009;29:889–894. doi: 10.1161/ATVBAHA.109.185694.
    1. Fain JN, Tagele BM, Cheema P, Madan AK, Tichansky DS. Release of 12 adipokines by adipose tissue, nonfat cells, and fat cells from obese women. Obes Silver Spring. 2010;18:890–896. doi: 10.1038/oby.2009.335.
    1. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Low-grade systemic inflammation in overweight children. Pediatrics. 2001;107:E13. doi: 10.1542/peds.107.1.e13.
    1. Zaldivar F, McMurray RG, Nemet D, Galassetti P, Mills PJ, Cooper DM. Body fat and circulating leucocytes in children. Int J Obes Lond. 2006;30:906–911. doi: 10.1038/sj.ijo.0803227.
    1. Seo JA, Jang ES, Kim BG, et al. Plasma visfatin levels are positively associated with circulating interleukin-6 in apparently healthy Korean women. Diab Res Clin Pract. 2008;79:108–111. doi: 10.1016/j.diabres.2007.04.016.
    1. Mayi TH, Duhem C, Copin C, et al. Visfatin is induced by peroxisome proliferator-activated receptor gamma in human macrophages. FEBS J. 2010;277:3308–3320.
    1. Skokowa J, Lan D, Thakur BK, et al. NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway. Nat Med. 2009;15:151–158. doi: 10.1038/nm.1913.
    1. Lee KJ, Shin YA, Lee KY, Jun TW, Song W. Aerobic exercise training-induced decrease in plasma visfatin and insulin resistance in obese female adolescents. Int J Sport Nutr Exerc Metab. 2010;20:275–281.
    1. von Kanel R, Mills PJ, Dimsdale JE. Short-term hyperglycemia induces lymphopenia and lymphocyte subset redistribution. Life Sci. 2001;69:255–262. doi: 10.1016/S0024-3205(01)01127-4.
    1. Kang YS, Song HK, Lee MH, Ko GJ, Cha DR. Plasma concentration of visfatin is a new surrogate marker of systemic inflammation in type 2 diabetic patients. Diab Res Clin Pract. 2010;89:141–149. doi: 10.1016/j.diabres.2010.03.020.
    1. Catalan V, Gomez-Ambrosi J, Rodriguez A et al (2011) Association of increased Visfatin/PBEF/NAMPT circulating concentrations and gene expression levels in peripheral blood cells with lipid metabolism and fatty liver in human morbid obesity. Nutr Metab Cardiovasc Dis. doi:
    1. Mesko B, Poliska S, Szegedi A, et al. Peripheral blood gene expression patterns discriminate among chronic inflammatory diseases and healthy controls and identify novel targets. BMC Med Genomics. 2010;3:15. doi: 10.1186/1755-8794-3-15.

Source: PubMed

3
Suscribir