Neonatal pneumococcal conjugate vaccine immunization primes T cells for preferential Th2 cytokine expression: a randomized controlled trial in Papua New Guinea

Anita H J van den Biggelaar, Peter C Richmond, William S Pomat, Suparat Phuanukoonnon, Marie A Nadal-Sims, Catherine J Devitt, Peter M Siba, Deborah Lehmann, Patrick G Holt, Anita H J van den Biggelaar, Peter C Richmond, William S Pomat, Suparat Phuanukoonnon, Marie A Nadal-Sims, Catherine J Devitt, Peter M Siba, Deborah Lehmann, Patrick G Holt

Abstract

The effects of neonatal immunization with 7-valent pneumococcal conjugate vaccine (7vPCV) on development of T-cell memory and general immune maturation were studied in a cohort of Papua New Guinean newborns. Neonatal 7vPCV priming (followed by a dose at 1 and 2 months of age) was associated with enhanced Th2, but not Th1, cytokine responses to CRM(197) compared to 7vPCV at 1 and 2 months of age only. T cell responses to non-7vPCV vaccine antigens were similar in all groups, but TLR-mediated IL-6 and IL-10 responses were enhanced in 7vPCV vaccinated compared to controls. Neonatal 7vPCV vaccination primes T cell responses with a polarization towards Th2 with no bystander effects on other T cell responses.

Figures

Fig. 1
Fig. 1
T cell responses to 7vPCV and concomitant vaccines. Peripheral blood mononuclear cells were cultured in vitro with medium only, or stimulated with the vaccine protein carrier CRM197, the polyclonal phytohemagglutinin (PHA), and vaccine antigens including soluble Hepatitis B antigen (HbsAg), mycobacterium purified protein derivative (PPD) and tetanus toxoid (TT). Antigen-specific cytokine responses were calculated by subtracting background levels that were produced in cultures with medium only from responses measured in stimulated cell cultures (‘delta concentration’). Represented are the geometric means (GMs) and standard errors of geometric means (SEGMs) for children randomized to the neonatal (white bar), infant (grey bar) and control group (black bar). Significant differences between groups are indicated at the 0.001 (***), 0.01 (**) and 0.05 (*) level.
Fig. 2
Fig. 2
Co-production of CRM197-specific Th1 and Th2 responses in neonatal, infant and control groups. Children were considered to produce Th1 responses to the 7vPCV protein carrier CRM197 when in vitro CRM197-induced IFN-γ responses were at least four times the background level, and Th2 responses if CRM197-induced IL-5 and/or IL-13 responses were at least four times the background. For each study group the proportion of children with no memory responses (hatched), Th2 without Th1 (light grey), mixed Th1/Th2 (dark grey) and Th1 without Th2 (black) is presented.
Fig. 3
Fig. 3
TLR-mediated immune responses. PBMC of 3-month-old children in the neonatal (white bar), infant (grey bar) and control group (black bar) were stimulated in vitro with lipoteichoic acid (LTA) (neonatal n = 37; infant n = 39; control n = 33), polyinosinic–polycytidylic acid (Poly:IC) (neonatal n = 40; infant n = 38; control n = 34), lipopolysaccharide (LPS) (neonatal n = 42; infant n = 40, control n = 35) and oligonucleotide CpG (CpG) (neonatal n = 32; infant n = 34; control n = 27). Bars represent geometric means and standard errors of geometric means of ligand specific cytokine responses (minus background response).
Fig. 4
Fig. 4
LPS-induced expression of inflammatory and cytotoxic mediators. PBMC of 3-month-old children in the neonatal 7vPCV (white bar), infant 7vPCV (grey bar) and control group (black bar) were stimulated in vitro with lipopolysaccharide (LPS). MRNA expression of IL-23, type-I interferon, Granzyme B and lymphotoxin-α were measured and normalized (ratio) for the expression of the housekeeping gene UBE2D2. Bars represent the geometric means and standard errors of geometric means of normalized mRNA expression in cells cultured in medium only (control) and LPS.

References

    1. The Lancet. The world's forgotten children. Lancet. 2003;361(9351):1.
    1. Rennels M.B., Edwards K.M., Keyserling H.L. Safety and immunogenicity of heptavalent pneumococcal vaccine conjugated to CRM197 in United States infants. Pediatrics. 1998;101(4 pt1):604–611.
    1. Klugman K.P., Madhi S.A., Huebner R.E., Kohberger R., Mbelle N., Pierce N. A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N Engl J Med. 2003;349(14):1341–1348.
    1. Schutze G.E., Tucker N.C., Mason E.O., Jr Impact of the conjugate pneumococcal vaccine in Arkansas. Pediatr Infect Dis J. 2004;23(12):1125–1129.
    1. Cutts F.T., Zaman S.M., Enwere G., Jaffar S., Levine O.S., Okoko J.B. Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in The Gambia: randomised, double-blind, placebo-controlled trial. Lancet. 2005;365(9465):1139–1146.
    1. The WHO Young Infants Study Group Bacterial etiology of serious infections in young infants in developing countries: results of a multicenter study. Pediatr Infect Dis J. 1999;18(10 Suppl.):S17–S22.
    1. Black R.E., Morris S.S., Bryce J. Where and why are 10 million children dying every year? Lancet. 2003;361(9376):2226–2234.
    1. Duke T. Neonatal pneumonia in developing countries. Arch Dis Child Fetal Neonatal Ed. 2005;90(3):F211–F219. [Review]
    1. Kakazo M., Lehmann D., Coakley K., Gratten H., Saleu G., Taime J. Mortality rates and the utilization of health services during terminal illness in the Asaro Valley, Eastern Highlands Province, Papua New Guinea. P N G Med J. 1999;42(1–2):13–26.
    1. Barker J., Gratten M., Riley I., Lehmann D., Montgomery J., Kajoi M. Pneumonia in children in the Eastern Highlands of Papua New Guinea: a bacteriologic study of patients selected by standard clinical criteria. J Infect Dis. 1989;159(2):348–352.
    1. Lehmann D., Yeka W., Rongap T., Javati A., Saleu G., Clegg A. Aetiology and clinical signs of bacterial meningitis in children admitted to Goroka Base Hospital, Papua New Guinea, 1989–1992. Ann Trop Paediatr. 1999;19(1):21–32.
    1. Leonard E.G., Canaday D.H., Harding C.V., Schreiber J.R. Antigen processing of the heptavalent pneumococcal conjugate vaccine carrier protein CRM(197) differs depending on the serotype of the attached polysaccharide. Infect Immun. 2003;71(7):4186–4189.
    1. Kamboj K.K., King C.L., Greenspan N.S., Kirchner H.L., Schreiber J.R. Immunization with Haemophilus influenzae type b-CRM(197) conjugate vaccine elicits a mixed Th1 and Th2 CD(4+) T cell cytokine response that correlates with the isotype of antipolysaccharide antibody. J Infect Dis. 2001;184(7):931–935.
    1. Kamboj K.K., Kirchner H.L., Kimmel R., Greenspan N.S., Schreiber J.R. Significant variation in serotype-specific immunogenicity of the seven-valent Streptococcus pneumoniae capsular polysaccharide-CRM197 conjugate vaccine occurs despite vigorous T cell help induced by the carrier protein. J Infect Dis. 2003;187(10):1629–1638.
    1. Ridge J.P., Fuchs E.J., Matzinger P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science. 1996;271(5256):1723–1726.
    1. Goriely S., Vincart B., Stordeur P., Vekemans J., Willems F., Goldman M. Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes. J Immunol. 2001;166(3):2141–2146.
    1. Goriely S., Van Lint C., Dadkhah R., Libin M., De Wit D., Demonte D. A defect in nucleosome remodeling prevents IL-12(p35) gene transcription in neonatal dendritic cells. J Exp Med. 2004;199(7):1011–1016.
    1. White G.P., Hollams E.M., Yerkovich S.T., Bosco A., Holt B.J., Bassami M.R. CpG methylation patterns in the IFN-γ promoter in naïve T cells: variations during Th1 and Th2 differentiation and between atopics and non-atopics. Pediatr Allergy Immunol. 2006;17(8):557–564.
    1. Thornton C.A., Upham J.W., Wikström M.E., Holt B.J., White G.P., Sharp M.J. Functional maturation of CD4+CD25+CTLA4+CD45RA+ T regulatory cells in human neonatal T cell responses to environmental antigens/allergens. J Immunol. 2004;173(5):3084–3092.
    1. Jakobsen H., Hannesdottir S., Bjarnarson S.P., Schulz D., Trannoy E., Siegrist C.A. Early life T cell responses to pneumococcal conjugates increase with age and determine the polysaccharide-specific antibody response and protective efficacy. Eur J Immunol. 2006;36(2):287–295.
    1. Marchant A., Goetghebuer T., Ota M.O., Wolfe I., Ceesay S.J., De Groote D. Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette-Guerin vaccination. J Immunol. 1999;163(4):2249–2255.
    1. Vekemans J., Amedei A., Ota M.O., D’Elios M.M., Goetghebuer T., Ismaili J. Neonatal bacillus Calmette-Guérin vaccination induces adult-like IFN-γ production by CD4+ T lymphocytes. Eur Immunol. 2001;31(5):1531–1535.
    1. Kurikka S., Kayhty H., Peltola H., Saarinen L., Eskola J., Makela P.H. Neonatal immunization: response to Haemophilus influenzae type-b tetanus toxoid conjugate vaccine. Pediatrics. 1995;95(6):815–822.
    1. Lieberman J.M., Greenberg D.P., Wong V.K., Partridge S., Chang S.J., Chiu C.Y. Effect of neonatal immunization with diphtheria and tetanus toxoids on antibody response to Haemophilus influenzae type-b conjugate vaccines. J Pediatr. 1995;126(2):198–205.
    1. Ward J.I., Bulkow L., Wainwright R.V., Chang S.J. Immune tolerance and lack of booster responses to Haemophilus influenza (Hib) conjugate vaccination in infants immunized beginning at birth. Program and abstracts of the 32nd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC); Anaheim, CA; 1992. p. 984.
    1. Rowe J., Kusel M., Holt B.J., Suriyaarachchi D., Serralha M., Hollams E. Prenatal versus postnatal sensitization to environmental allergens in a high-risk birth cohort. J Allergy Clin Immunol. 2007;119(5):1164–1173.
    1. Malhotra I., Ouma J., Wamachi A., Kioko J., Mungai P., Omollo A. In utero exposure to helminth and mycobacterial antigens generates cytokine responses similar to that observed in adults. Clin Invest. 1997;99(7):1759–1766.
    1. Malhotra I., Mungai P., Wamachi A., Kioko J., Ouma J.H., Kazura J.W. Helminth- and Bacillus Calmette-Guérin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J Immunol. 1999;162(11):6843–6848.
    1. Malhotra I., Mungai P.L., Wamachi A.N., Tisch D., Kioko J.M., Ouma J.H. Prenatal T cell immunity to Wuchereria bancrofti and its effect on filarial immunity and infection susceptibility during childhood. J Infect Dis. 2006;193(7):1005–1013.
    1. Marchant A., Appay V., Van Der Sande M., Dulphy N., Liesnard C., Kidd M. Mature CD8(+) T lymphocyte response to viral infection during fetal life. J Clin Invest. 2003;111(11):1747–1755.
    1. Brustoski K., Möller U., Kramer M., Petelski A., Brenner S., Palmer D.R. IFN-γ and IL-10 mediate parasite-specific immune responses of cord blood cells induced by pregnancy-associated Plasmodium falciparum malaria. J Immunol. 2005;174(3):1738–1745.
    1. Sharp M.J., Rowe J., Kusel M., Sly P.D., Holt P.G. Specific patterns of responsiveness to microbial antigens staphylococcal enterotoxin B and purified protein derivative by cord blood mononuclear cells are predictive of risk for development of atopic dermatitis. Clin Exp Allergy. 2003;33(4):435–441.
    1. Hamalainen H.K., Tubman J.C., Vikman S., Kyrola T., Ylikoski E., Warrington J.A. Identification and validation of endogenous reference genes for expression profiling of T helper cell differentiation by quantitative real-time RT-PCR. Anal Biochem. 2001;299(1):63–70.
    1. Vernacchio L., Bernstein H., Pelton S., Allen C., MacDonald K., Dunn J. Effect of monophosphoryl lipid A (MPL) on T-helper cells when administered as an adjuvant with pneumocococcal-CRM197 conjugate vaccine in healthy toddlers. Vaccine. 2002;20(31–32):3658–3667.
    1. Rowe J., Yerkovich S.T., Richmond P., Suriyaarachchi D., Fisher E., Feddema L. Th2-associated local reactions to the acellular diphtheria-tetanus-pertussis vaccine in 4- to 6-year-old children. Infect Immun. 2005;73(12):8130–8135.
    1. Li H., Nookala S., Re F. Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1β and IL-18 release. J Immunol. 2007;178(8):5271–5276.
    1. Kool M., Soullié T., van Nimwegen M., Willart M.A., Muskens F., Jung S. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med. 2008;205(4):869–882.
    1. Dinarello C.A. Blocking IL-1 in systemic inflammation. J Exp Med. 2001;201(9):1355–1359.
    1. Samarasinghe R., Tailor P., Tamura T., Kaisho T., Akira S., Ozato K. Induction of an anti-inflammatory cytokine, IL-10, in dendritic cells after toll-like receptor signaling. J Interferon Cytokine Res. 2006;26(12):893–900.
    1. Kamath A.T., Valenti M.P., Rochat A.F., Agger E.M., Lingnau K., von Gabain A. Protective anti-mycobacterial T cell responses through exquisite in vivo activation of vaccine-targeted dendritic cells. Eur J Immunol. 2008;38(5):1247–1256.
    1. Novitskiy S.V., Ryzhov S., Zaynagetdinov R., Goldstein A.E., Huang Y., Tikhomirov O.Y. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood. 2008;112(5):1822–1831.
    1. Corinti S., Albanesi C., la Sala A., Pastore S., Girolomoni G. Regulatory activity of autocrine IL-10 on dendritic cell functions. J Immunol. 2001;166(7):4312–4318.
    1. Wakkach A., Fournier N., Brun V., Breittmayer J.P., Cottrez F., Groux H. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity. 2003;18(5):605–617.
    1. Geisel J., Kahl F., Müller M., Wagner H., Kirschning C.J., Autenrieth I.B. IL-6 and maturation govern TLR2 and TLR4 induced TLR agonist tolerance and cross-tolerance in dendritic cells. J Immunol. 2007;179(9):5811–5818.
    1. Sheibanie A.F., Khayrullina T., Safadi F.F., Ganea D. Prostaglandin E2 exacerbates collagen-induced arthritis in mice through the inflammatory interleukin-23/interleukin-17 axis. Arthritis Rheum. 2007;56(8):2608–2619.
    1. Serada S., Fujimoto M., Mihara M., Koike N., Ohsugi Y., Nomura S. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2008;105(26):9041–9046.

Source: PubMed

3
Suscribir