Robot-Assisted Stair Climbing Training on Postural Control and Sensory Integration Processes in Chronic Post-stroke Patients: A Randomized Controlled Clinical Trial

Marialuisa Gandolfi, Nicola Valè, Eleonora Dimitrova, Maria Elisabetta Zanolin, Nicola Mattiuz, Elisa Battistuzzi, Marcello Beccari, Christian Geroin, Alessandro Picelli, Andreas Waldner, Nicola Smania, Marialuisa Gandolfi, Nicola Valè, Eleonora Dimitrova, Maria Elisabetta Zanolin, Nicola Mattiuz, Elisa Battistuzzi, Marcello Beccari, Christian Geroin, Alessandro Picelli, Andreas Waldner, Nicola Smania

Abstract

Background: Postural control disturbances are one of the important causes of disability in stroke patients affecting balance and mobility. The impairment of sensory input integration from visual, somatosensory and vestibular systems contributes to postural control disorders in post-stroke patients. Robot-assisted gait training may be considered a valuable tool in improving gait and postural control abnormalities.

Objective: The primary aim of the study was to compare the effects of robot-assisted stair climbing training against sensory integration balance training on static and dynamic balance in chronic stroke patients. The secondary aims were to compare the training effects on sensory integration processes and mobility.

Methods: This single-blind, randomized, controlled trial involved 32 chronic stroke outpatients with postural instability. The experimental group (EG, n = 16) received robot-assisted stair climbing training. The control group (n = 16) received sensory integration balance training. Training protocols lasted for 5 weeks (50 min/session, two sessions/week). Before, after, and at 1-month follow-up, a blinded rater evaluated patients using a comprehensive test battery. Primary outcome: Berg Balance Scale (BBS). Secondary outcomes:10-meter walking test, 6-min walking test, Dynamic gait index (DGI), stair climbing test (SCT) up and down, the Time Up and Go, and length of sway and sway area of the Center of Pressure (CoP) assessed using the stabilometric assessment.

Results: There was a non-significant main effect of group on primary and secondary outcomes. A significant Time × Group interaction was measured on 6-min walking test (p = 0.013) and on posturographic outcomes (p = 0.005). Post hoc within-group analysis showed only in the EG a significant reduction of sway area and the CoP length on compliant surface in the eyes-closed and dome conditions.

Conclusion: Postural control disorders in patients with chronic stroke may be ameliorated by robot-assisted stair climbing training and sensory integration balance training. The robot-assisted stair climbing training contributed to improving sensorimotor integration processes on compliant surfaces. Clinical trial registration (NCT03566901).

Keywords: motor skill disorders; postural balance; proprioception; sensory feedback; sensory function.

Copyright © 2019 Gandolfi, Valè, Dimitrova, Zanolin, Mattiuz, Battistuzzi, Beccari, Geroin, Picelli, Waldner and Smania.

Figures

FIGURE 1
FIGURE 1
The G-EO system used in the Robot-Assisted Stair-Climbing Training (Written informed consent was obtained from the individual pictured, for the publication of this image).
FIGURE 2
FIGURE 2
CONSORT flowchart.
FIGURE 3
FIGURE 3
Instrumental assessment of postural control. (A–C) means ± standard deviation of CoP perimeter. Abscissa indicates the six conditions. Ordinate indicates the CoP perimeter (mm). (D–F) means ± standard deviation of sway area. Abscissa indicates the six conditions. Ordinate indicates the sway area (mm2). Asterisks indicates significant differences in between-group comparison.

References

    1. Bonan I. V., Colle F. M., Guichard J. P., Vicaut E., Eisenfisz M., Ba Huy P., et al. (2004). Reliance on visual information after stroke. part I: balance on dynamic posturography. Arch. Phys. Med. Rehabil. 85 268–273. 10.1016/j.apmr.2003.06.017
    1. Bowden M. G., Balasubramanian C. K., Behrman A. L., Kautz S. A. (2008). Validation of a speed-based classification system using quantitative measures of walking performance poststroke. Neurorehabil. Neural. Repair. 22 672–675. 10.1177/1545968308318837
    1. Bruni M. F., Melegari C., De Cola M. C., Bramanti A., Bramanti P., Calabrò R. S. (2018). What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis. J. Clin. Neurosci. 48 11–17. 10.1016/j.jocn.2017.10.048
    1. Cattaneo D., Regola A., Meotti M. (2006). Validity of six balance disorders scales in persons with multiple sclerosis. Disabil. Rehabil. 30 789–795. 10.1080/09638280500404289
    1. Conesa L., Costa Ú., Morales E., Edwards D. J., Cortes M., León D., et al. (2012). An observational report of intensive robotic and manual gait training in sub-acute stroke. J. Neuroeng. Rehabil. 9:13. 10.1186/1743-0003-9-13
    1. Cramer S. C. (2018). Treatments to promote neural repair after stroke. J. Stroke 20 57–70. 10.5853/jos.2017.02796
    1. Da-Silva P. J. G., Cagy M., Infantosi A. F. C. (2016). Developing a dynamic virtual stimulation protocol to induce linear egomotion during orthostatic posture control test. Res. Biomed. Eng. 32 273–282. 10.1590/2446-4740.01616
    1. Dias D., Laíns J., Pereira A., Nunes R., Caldas J., Amaral C., et al. (2007). Can we improve gait skills in chronic hemiplegics? A randomised control trial with gait trainer. Eura. Medicophys. 43 499–504.
    1. Donoghue D., Physiotherapy Research and Older People group. Stokes E. K. (2009). How much change is true change? The minimum detectable change of the berg balance scale in elderly people. J. Rehabil. Med. 41 343–346. 10.2340/16501977-0337
    1. Emken J. L., Reinkensmeyer D. J. (2005). Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans. Neural. Syst. Rehabil. Eng. 13 33–39. 10.1109/tnsre.2004.843173
    1. Flansbjer U. B., Holmbäck A. M., Downham D., Patten C., Lexell J. (2005). Reliability of gait performance tests in men and women with hemiparesis after stroke. J. Rehabil. Med. 37 75–82. 10.1080/16501970410017215
    1. Gandolfi M., Geroin C., Picelli A., Munari D., Waldner A., Tamburin S., et al. (2014). Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front. Hum. Neurosci. 8:318. 10.3389/fnhum.2014.00318
    1. Gandolfi M., Munari D., Geroin C., Gajofatto A., Benedetti M. D., Midiri A., et al. (2015). Sensory integration balance training in patients with multiple sclerosis: a randomized, controlled trial. Mult. Scler. 21 1453–1462. 10.1177/1352458514562438
    1. Geroin C., Mazzoleni S., Smania N., Gandolfi M., Bonaiuti D., Gasperini G., et al. (2013). Systematic review of outcome measures of walking training using electromechanical and robotic devices in patients with stroke. J. Rehabil. Med. 45 987–996. 10.2340/16501977-1234
    1. Harries N., Loeppky J. A., Shaheen S., Al-Jarrah M., Molteni F., Hutzler Y., et al. (2015). A stair-climbing test for measuring mechanical efficiency of ambulation in adults with chronic stroke. Disabil. Rehabil. 37 1004–1008. 10.3109/09638288.2014.948131
    1. Hesse S., Tomelleri C., Bardeleben A., Werner C., Waldner A. (2012). Robot-assisted practice of gait and stair climbing in non-ambulatory stroke patients. JRRD 4 613–622.
    1. Hesse S., Waldner A., Tomelleri C. (2010). Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J. Neuroeng. Rehabil. 28:30. 10.1186/1743-0003-7-30
    1. Hidler J., Nichols D., Pelliccio M., Brady K., Campbell D. D., Kahn J. H., et al. (2009). Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabil. Neural. Repair. 23 5–13. 10.1177/1545968308326632
    1. Hiengkaew V., Jitaree K., Chaiyawat P. (2012). Minimal detectable changes of the berg balance scale, fugl-meyer assessment scale, timed “up & go” test, gait speeds, and 2-minute walk test in individuals with chronic stroke with different degrees of ankle plantarflexor tone. Arch. Phys. Med. Rehabil. 93 1201–1208. 10.1016/j.apmr.2012.01.014
    1. Horak F. B. (2006). Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 35(Suppl. 2), ii7–ii11. 10.1093/ageing/afl077
    1. Horak F. B., Kuo A. (2000). “Postural Adaptation for Altered Environments, Tasks and Intentions,” in Biomechanics and Neuronal Control of Posture and Movement, eds Winters J. M., Crago P. E. (New York, NY: Springer; ), 267–281. 10.1007/978-1-4612-2104-3_19
    1. Hussein S., Schmidt H., Volkmar M., Werner C., Helmich I., Piorko F., et al. (2008). Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008 1961–1964. 10.1109/IEMBS.2008.4649572
    1. Jacobs J. V., Horak F. B. (2007). Cortical control of postural responses. J. Neural. Transm. 114 1339–1348. 10.1007/s00702-007-0657-0
    1. Jonsdottir J., Cattaneo D. (2007). Reliability and validity of the dynamic gait index in persons with chronic stroke. Arch. Phys. Med. Rehabil. 88 1410–1415. 10.1016/j.apmr.2007.08.109
    1. Lam T., Anderschitz M., Dietz V. (2006). Contribution of feedback and feedforward strategies to locomotor adaptations. J. Neurophysiol. 95 766–773. 10.1152/jn.00473.2005
    1. Lo K., Stephenson M., Lockwood C. (2017). Effectiveness of robotic assisted rehabilitation for mobility and functional ability in adult stroke patients: a systematic review. JBI Database System. Rev. Implement. Rep. 15 3049–3091. 10.11124/JBISRIR-2017-003456
    1. Mancini M., Horak F. B. (2010). The relevance of clinical balance assessment tools to differentiate balance deficits. Eur. J. Phys. Rehabil. Med. 46 239–248.
    1. Mazzoleni S., Focacci A., Franceschini M., Waldner A., Spagnuolo C., Battini E., et al. (2017). Robot-assisted end-effector-based gait training in chronic stroke patients: a multicentric uncontrolled observational retrospective clinical study. Neurorehabilitation 40 483–492. 10.3233/NRE-161435
    1. Mehrholz J., Elsner B., Werner C., Kugler J., Pohl M. (2013). Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 5:CD006185. 10.1002/14651858
    1. Modai G., Sharon B., Bar-Haim S., Hutzler Y. (2015). Stair climbing test post-stroke: feasibility, convergent validity and metabolic, cardiac, and respiratory responses. Top. Stroke Rehabil. 22 281–288. 10.1179/1074935714Z.0000000021
    1. Morone G., Paolucci S., Cherubini A., De Angelis D., Venturiero V., Coiro P., et al. (2017). Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 13 1303–1311. 10.2147/NDT.S114102
    1. Nadeau S., McFadyen B. J., Malouin F. (2003). Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking? Clin. Biomech. 18 950–959. 10.1016/s0268-0033(03)00179-7
    1. Ng M. F., Tong R. K., Li L. S. (2008). A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation: six-month follow-up. Stroke 39 154–160. 10.1161/strokeaha.107.495705
    1. Oliveira L. F., Simpson D. M., Nadal J. (1996). Calculation of area of Stabilometric signals using principal component analysis. Physiol. Meas. 17 305–312. 10.1088/0967-3334/17/4/008
    1. Pedroso R. V., Coelho F. G., Santos-Galduróz R. F., Costa J. L., Gobbi S., Stella F. (2012). Balance, executive functions and falls in elderly with Alzheimer’s disease (AD): a longitudinal study. Arch. Gerontol. Geriatr. 54 348–351. 10.1016/j.archger.2011.05.029
    1. Peterka R. J. (2002). Sensorimotor integration in human postural control. J. Neurophysiol. 88 1097–1118. 10.1152/jn.2002.88.3.1097
    1. Peurala S. H., Tarkka I. M., Pitkänen K., Sivenius J. (2005). The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Arch. Phys. Med. Rehabil. 86 1557–1564. 10.1016/j.apmr.2005.02.005
    1. Pollock A., Baer G., Campbell P., Choo P. L., Forster A., Morris J., et al. (2014). Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev 22:CD001920. 10.1002/14651858.CD001920.pub3
    1. Scoppa F., Capra R., Gallamini M., Shiffer R. (2013). Clinical stabilometry standardization: basic definitions–acquisition interval–sampling frequency. Gait Posture 37 290–292. 10.1016/j.gaitpost.2012.07.009
    1. Shumway-Cook A., Horak F. B. (1986). Assessing the influence of sensory interaction of balance. Suggestion from the field. Phys. Ther. 66 1548–1550. 10.1093/ptj/66.10.1548
    1. Shumway-Cook A., Woollacott M. H. (2012). Motor Control Translating Research into Clinical Practice, 4th Ed Philadelphia PA: Wolters Kluver Lippincott.
    1. Smania N., Picelli A., Gandolfi M., Fiaschi A., Tinazzi M. (2008). Rehabilitation of sensorimotor integration deficits in balance impairment of patients with stroke hemiparesis: a before/after pilot study. Neurol. Sci. 29 313–319. 10.1007/s10072-008-0988-980
    1. Stoller O., Schindelholz M., Bichsel L., Hunt K. J. (2014). Cardiopulmonary responses to robotic end-effector-based walking and stair climbing. Med. Eng. Phys. 36 425–431. 10.1016/j.medengphy.2013.12.016
    1. Stoller O., Schindelholz M., Hunt K. J. (2016). Robot-assisted end-effector-based stair climbing for cardiopulmonary exercise testing: feasibility, reliability, and repeatability. PLoS One 11:e0148932. 10.1371/journal.pone.0148932
    1. Sung J., You H., Kim H. Y. (2017). A review of robot-assisted gait training in stroke patients. Brain Neurorehabil. 10:e9 10.12786/bn.2017.10.e9
    1. Swinnen E., Beckwée D., Meeusen R., Baeyens J. P., Kerckhofs E. (2014). Does robot-assisted gait rehabilitation improve balance in stroke patients? A systematic review. Top. Stroke Rehabil. 21 87–100. 10.1310/tsr2102-87
    1. Tomelleri C., Waldner A., Werner C., Hesse S. (2011). Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions. IEEE Int. Conf. Rehabil. Robot. 2011 5975492. 10.1109/ICORR.2011.5975492
    1. Tong R. K., Ng M. F., Li L. S. (2006). Effectiveness of gait training using an electromechanical gait trainer, with and without functional electric stimulation, in subacute stroke: a randomized controlled trial. Arch. Phys. Med. Rehabil. 87 1298–1304. 10.1016/j.apmr.2006.06.016
    1. Tyson S. F., Connell L. A. (2009a). How to measure balance in clinical practice. a systematic review of the psychometrics and clinical utility of measures of balance activity for neurological conditions. Clin. Rehabil. 23 824–840. 10.1177/0269215509335018
    1. Tyson S. F., Connell L. A. (2009b). The psychometric properties and clinical utility of measures of walking and mobility in neurological conditions: a systematic review. Clin. Rehabil. 23 1018–1033. 10.1177/0269215509339004
    1. Westlake K. P., Patten C. (2009). Pilot study of lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J. Neuroeng. Rehabil. 6:18. 10.1186/1743-0003-6-18
    1. Wevers L. E., Kwakkel G., van de Port I. G. (2011). Is outdoor use of the six-minute walk test with a global positioning system in stroke patients’ own neighbourhoods reproducible and valid? J. Rehabil. Med. 43 1027–1031. 10.2340/16501977-0881
    1. Wong C. K., Bishop L., Stein J. (2012). A wearable robotic knee orthosis for gait training: a case-series of hemiparetic stroke survivors. Prosthet. Orthot. Int. 36 113–120. 10.1177/0309364611428235

Source: PubMed

3
Suscribir